Download presentation
Presentation is loading. Please wait.
1
Solid mechanics Define the terms
Calculate stresses in deposited thin films using the disk method Stress Deformation Strain Thermal strain Thermal expansion coefficient Appropriately relate various types of stress to the correct corresponding strain using elastic theory Give qualitative descriptions of how intrinsic stress can form within thin films Calculate biaxial stress resulting from thermal mismatch in the deposition of thin films
2
Why? Solid mechanics... Why? Why?
4
A bi-layer of TiNi and SiO2. (From Wang, 2004)
Why? Why is this thing bent? Thermal actuator produced by Southwest Research Institute And these? A bi-layer of TiNi and SiO2. (From Wang, 2004)
5
Why? Membrane is piezoresistive; i.e., the electrical resistance changes with deformation. Adapted from MEMS: A Practical Guide to Design, Analysis, and Applications, Ed. Jan G. Korvink and Oliver Paul, Springer, 2006 A simple piezoelectric actuator design: An applied voltage causes stress in the piezoelectric thin film stress causing the membrane to bend
6
Why? Hot arm actuator + How much does it move here? e
- Zap it with a voltage here… How much does it move here? i + e - ω Joule heating leads to different rates of thermal expansion, in turn causing stress and deflection.
8
Stress and strain ε = — σ = — = — Normal stress Normal strain
A = w·t t P P w w L δ δ P P Normal stress ε = — Normal strain σ = — = — L A wt Dimensions Typical units Dimensions Typical units [L ] [F ] [F ] N μ-strain = 10-6 (dimensionless) Pa [A ] [L ]2 m 2 [L ]
9
(Modulus of elasticity,
How are stress and strain related to each other? P σ X fracture F = kx plastic (permanent) deformation X fracture E σ = ε E L elastic (permanent) deformation Young’s modulus (Modulus of elasticity, Elastic modulus) brittle ductile E δ ε P
10
Strain in one direction causes strain in other directions
Elasticity Strain in one direction causes strain in other directions y x εy = εx -ν Poisson’s ratio
11
Stress generalized ΣF = 0, ΣMo = 0 τxy = τyx τyz = τzy τzx = τxz
Stress is a surface phenomenon. z σz ΣF = 0, ΣMo = 0 τxy = τyx τyz = τzy τzx = τxz τzy τzx τyz τxz σy τxy τyx y σx σ : normal stress Force is normal to surface σx stress normal to x-surface τ : shear stress Force is parallel to surface τxy stress on x-surface in y-direction x
12
Strain generalized Essentially, strain is just differential deformation. Deforms Δy + dΔy Δy Δx Δx + dΔx Break into two pieces: dux ux ux + dx = dy + θ2 Shear strain is strain with no volume change. duy dx θ1 uniaxial strain shear strain u: displacement
13
Relation of shear stress to shear strain
Just as normal stress causes uniaxial (normal) strain, shear stress causes shear strain. dux τyx τxy = γxy τxy G τxy θ2 duy shear modulus τyx θ1 Si sabes cualquiera dos de E, G, y ν, sabes el tercer. Limits on ν: 0 < ν < 0.5 Magic Algebra Box ν = 0.5 incompressible
14
Generalized stress-strain relations
The previous stress/strain relations hold for either pure uniaxial stress or pure shear stress. Most real deformations, however, are complicated combinations of both, and these relations do not hold Deforms εx = [ ] + [ ] + [ ] -ν τxy = G γxy -ν x normal strain due to x normal stress x normal strain due to y normal stress x normal strain due to z normal stress
15
Generalized Hooke’s Law
For a general 3-D deformation of an isotropic material, then εx = γxy = εy = γyz = εz = γzx = Generalized Hooke’s Law
16
Special cases σ = Eε σx = σy = σz = σ = K•(ΔV/V)
Uniaxial stress/strain σ = Eε No shear stress, todos esfuerzos normales son iguales σx = σy = σz = σ = K•(ΔV/V) Biaxial stress Stress in a plane, los dos esfuerzos normales son iguales σx = σy = σ = [E / (1 - ν)] • ε volume strain bulk modulus biaxial modulus
17
Elasticity for a crystalline silicon
The previous equations are for isotropic materials. Is crystalline silicon isotropic? E Cij Compliance coefficients For crystalline silicon C11 = 166 GPa, C12 = 64 GPa and C44 = 80 GPa
18
Te toca a ti Assuming that elastic theory holds, choose the appropriate modulus and/or stress-strain relationship for each of the following situations. A monkey is hanging on a rope, causing it to stretch. How do you model the deformation/stress-strain in the rope? A water balloon is being filled with water. How do you model the deformation/stress-strain in the balloon membrane? A nail is hammered into a piece of plywood. How do you model the deformation/stress-strain in the nail? A microparticle is suspended in a liquid for use in a microfluidic application, causing it to compress slightly. How do you model the deformation/stress-strain in the microparticle? A thin film is deposited on a much thicker silicon wafer. How do you model the deformation/stress-strain in the thin film? A thin film is deposited on a much thicker silicon wafer. How do you model the deformation/stress-strain in the wafer? A thin film is deposited on a much thicker glass substrate. How do you model the deformation/stress-strain in the glass substrate? Uniaxial stress/strain Biaxial stress/strain Use bulk modulus (no shear, all three normal stresses the same) Anisotropic stress/strain (Using Cij compliance coefficients) Generalized Hooke’s Law. I.e., ε = (1/E)(σx – ν(σy + σz)) etc.
19
Thermal expansion coefficient
Thermal strain Thermal Expansion Most things expand upon heating, and shrink upon cooling. δ(T) = αT (T-T0) Notes: αT ≈ constant ≠ f(T) ε(T) ≈ ε(T0) + αT (T-T0) Thermal strain tends to be the same in all directions even when material is otherwise anisotropic. If no initial strain Thermal expansion coefficient
20
Solid mechanics of thin films
Adhesion Ways to help ensure adhesion of deposited thin films: Ensure cleanliness Increase surface roughness Include an oxide-forming element in between a metal deposited on oxide Stress in thin films positive (+) Negative (-) Tension headache Tension Compression
21
Stress in thin films Two types of stress Intrinsic stress
Extrinsic stress Also known as growth stresses, these develop during as the film is being formed. These stresses result from externally imposed factors. Thermal stress is a good example. Doping Sputtering Microvoids Gas entrapment Polymer shrinkage
22
εboth = εsubstrate or εfilm ?
Thermal stress in thin films Consider a thin film deposited on a substrate at a deposition temperature, Td. (Both the film and the substrate are initially at Td.) Initially the film is in a stress free state. The film and substrate are then allowed to cool to room temperature, Tr thin film deposited at Td substrate Since the two materials are hooked together, they both experience the same ____________ as they cool. strain both cooled to Tr εboth = εsubstrate or εfilm ? εmismmatch = αT,s(Tr - Td) - αT,f (Tr - Td) = (αT,f - αT,s)(Td - Tr) εsubstrate = αT,s(Tr - Td) = εfilm = αT,f (Tr - Td) + εmismmatch
23
Thermal stress in thin films
How would you relate σmismatch to εmismatch? Biaxial stress/strain σmismatch = [E / (1-ν)]·εmismatch = [E / (1-ν)]·(αT,f - αT,s)(Td - Tr) If αT,f > αT,s σmismatch = (+) or (-) Film is in ___________________. If αT,f < αT,s σmismatch = (+) or (-) Film is in ___________________. tension compression Thin film Initially stress free cantilever σmismatch > 0 σmismatch < 0 Sacrificial layer
24
Compression or tension? Compression or tension?
Stress in thin films Compression or tension? Compression or tension? (a) (b) (a) Stress in SiO2/Al cantilevers (b) Stress in SiO2/Ti cantilevers [From Fang and Lo, (2000)] αT,Al >, <, = αT,SiO2 ? αT,Ti >, <, = αT,SiO2 ?
25
How were these fabricated?
Stress in thin films How were these fabricated? (a) (b) (a) Stress in SiO2/Al cantilevers (b) Stress in SiO2/Ti cantilevers [From Fang and Lo, (2000)]
26
Te toca a ti Show that the biaxial modulus is given by E/(1 – ν) Pistas: Remember what the assumptions for “biaxial” are. In thin films you can always find one set of x-y axes for which there is only σ and no τ.
27
Biaxial modulus of the wafer strain at wafer/film interface
Measuring thin film stress The disk method Assumptions: The film thickness is uniform and small compared to the wafer thickness. The stress in the thin film is biaxial and uniform across it’s thickness. Ths stress in the wafer is equi-biaxial (biaxial at any location in the thickness). The wafer is unbowed before the addition of the thin film. Wafer properties are isotropic in the direction normal to the film. The wafer isn’t rigidly attached to anything when the deflection measurement is made. Stressed wafer (after thin film) R Unstressed wafer (before thin film) R = _________________________, T = _________________________ and t = _________________________. radius of curvature wafer thickness Biaxial modulus of the wafer strain at wafer/film interface thin film thickness
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.