Download presentation
Presentation is loading. Please wait.
1
VGA Display Part 3 Animation
ECE 448 Lecture 12 VGA Display Part 3 Animation ECE 448 – FPGA and ASIC Design with VHDL
2
Required Reading Old Edition of the Textbook 2008 (see Piazza)
P. Chu, FPGA Prototyping by VHDL Examples Chapter 12, VGA Controller I: Graphic Source Code of Examples Basys 3 FPGA Board Reference Manual 7. VGA Port ECE 448 – FPGA and ASIC Design with VHDL
3
PONG ECE 448 – FPGA and ASIC Design with VHDL
4
PONG Commonly regarded as the first
"commercially successful" video game Released by Atari in 1972 Created by Allan Alcorn as a training exercise assigned to him by Atari co-founder Nolan Bushnell The first prototype developed completely in hardware using TTL devices Originally used as an arcade video game Home version released during the 1975 Christmas season ECE 448 – FPGA and ASIC Design with VHDL
5
PONG ECE 448 – FPGA and ASIC Design with VHDL
6
PONG – Interesting Videos
Pong Game First documented Video Ping-Pong game – 1969 Classic Game Room HD - PONG for Nintendo DS / GBA ECE 448 – FPGA and ASIC Design with VHDL
7
Animation ECE 448 – FPGA and ASIC Design with VHDL
8
Animation Basics Animation is achieved by an object changing
its location gradually in each frame We use signals, instead of constants, to determine boundaries of an object VGA monitor is refreshed 60 times per second The boundary signals need to be updated at this rate We create a 60 Hz enable tick, refr_tick, which is asserted for 1 pixel period every 1/60th of a second ECE 448 – FPGA and ASIC Design with VHDL
9
Moving the Bar (Paddle)
600 ≤ x ≤ 603 bar_y_t ≤ y ≤ bar_y_b bar_y_t = bar_y_reg bar_y_b=bar_y_t+BAR_Y_SIZE-1 BAR_V is a velocity of the bar (#pixels/frame) ECE 448 – FPGA and ASIC Design with VHDL
10
Moving the Bar in VHDL (1)
-- bar left, right boundary constant BAR_X_L: integer:=600; constant BAR_X_R: integer:=603; -- bar top, bottom boundary signal bar_y_t, bar_y_b: unsigned(9 downto 0); constant BAR_Y_SIZE: integer:=72; -- reg to track top boundary (x position is fixed) signal bar_y_reg, bar_y_next: unsigned(9 downto 0); -- bar moving velocity when the button is pressed constant BAR_V: integer:=4; ECE 448 – FPGA and ASIC Design with VHDL
11
Moving the Bar in VHDL (2)
-- boundary bar_y_t <= bar_y_reg; bar_y_b <= bar_y_t + BAR_Y_SIZE - 1; -- pixel within bar bar_on <= '1' when (BAR_X_L<=pix_x) and (pix_x<=BAR_X_R) and (bar_y_t<=pix_y) and (pix_y<=bar_y_b) else '0'; -- bar rgb output bar_rgb <= "010"; --green ECE 448 – FPGA and ASIC Design with VHDL
12
bar_y_reg, bar_y_t, and bar_y_b
ECE 448 – FPGA and ASIC Design with VHDL
13
Moving the Bar in VHDL (4)
process (clk, reset) begin if reset='1' then bar_y_reg <= (others=>'0'); elsif (clk'event and clk='1') then bar_y_reg <= bar_y_next; end if; end process; ECE 448 – FPGA and ASIC Design with VHDL
14
Circuit calculating bar_y_next
ECE 448 – FPGA and ASIC Design with VHDL
15
Moving the Bar in VHDL (3)
-- new bar y-position process(bar_y_reg, bar_y_b, bar_y_t, refr_tick, btn) begin bar_y_next <= bar_y_reg; -- no move if refr_tick='1' then if btn(1)='1' and bar_y_b <= (MAX_Y-1-BAR_V) then bar_y_next <= bar_y_reg + BAR_V; -- move down elsif btn(0)='1' and bar_y_t >= BAR_V then bar_y_next <= bar_y_reg - BAR_V; -- move up end if; end process; ECE 448 – FPGA and ASIC Design with VHDL
16
Moving the Ball ball_x_l ≤ x ≤ ball_x_r ball_y_t ≤ y ≤ ball_y_b
ball_x_l = ball_x_reg ball_x_r=ball_x_l+BALL_SIZE-1 ball_y_t = ball_y_reg ball_y_b=ball_y_t+BALL_SIZE-1 ECE 448 – FPGA and ASIC Design with VHDL
17
Ball Velocity The ball may change direction by hitting the wall,
the paddle, or the bottom or top of the screen We decompose velocity into an x-component and a y-component Each component can have either a positive value BALL_V_P or a negative value BALL_V_N The current value of each component is kept in x_delta_reg and y_delta_reg ECE 448 – FPGA and ASIC Design with VHDL
18
Velocity Components of the Ball
x x_delta_reg = BALL_V_N y_delta_reg = BALL_V_N x_delta_reg = BALL_V_P y_delta_reg = BALL_V_N x_delta_reg = BALL_V_N y_delta_reg = BALL_V_P x_delta_reg = BALL_V_P y_delta_reg = BALL_V_P y ECE 448 – FPGA and ASIC Design with VHDL
19
Moving the Ball in VHDL (1)
constant BALL_SIZE: integer:=8; -- 8 -- ball boundaries signal ball_x_l, ball_x_r: unsigned(9 downto 0); signal ball_y_t, ball_y_b: unsigned(9 downto 0); -- reg to track left, top boundary signal ball_x_reg, ball_x_next: unsigned(9 downto 0); signal ball_y_reg, ball_y_next: unsigned(9 downto 0); -- reg to track ball speed signal x_delta_reg, x_delta_next: unsigned(9 downto 0); signal y_delta_reg, y_delta_next: unsigned(9 downto 0); -- ball velocity can be pos or neg constant BALL_V_P: unsigned(9 downto 0) := to_unsigned(2,10); constant BALL_V_N: unsigned(9 downto 0) := unsigned(to_signed(-2,10)); ECE 448 – FPGA and ASIC Design with VHDL
20
Moving the Ball in VHDL (3)
ball_x_l <= ball_x_reg; ball_y_t <= ball_y_reg; ball_x_r <= ball_x_l + BALL_SIZE - 1; ball_y_b <= ball_y_t + BALL_SIZE - 1; -- pixel within ball sq_ball_on <= '1' when (ball_x_l<=pix_x) and (pix_x<=ball_x_r) and (ball_y_t<=pix_y) and (pix_y<=ball_y_b) else '0'; ECE 448 – FPGA and ASIC Design with VHDL
21
Moving the Ball in VHDL (2)
type rom_type is array (0 to 7) of std_logic_vector(0 to 7); constant BALL_ROM: rom_type := ( " ", -- **** " ", -- ****** " ", -- ******** " " **** ); signal rom_addr, rom_col: unsigned(2 downto 0); signal rom_data: std_logic_vector(0 to 7); signal rom_bit: std_logic; ECE 448 – FPGA and ASIC Design with VHDL
22
Moving the Ball in VHDL (4)
-- map current pixel location to ROM addr/col rom_addr <= pix_y(2 downto 0) - ball_y_t(2 downto 0); rom_col <= pix_x(2 downto 0) - ball_x_l(2 downto 0); rom_data <= BALL_ROM(to_integer(rom_addr)); rom_bit <= rom_data(to_integer(rom_col)); -- pixel within ball rd_ball_on <= '1' when (sq_ball_on='1') and (rom_bit='1') else '0'; -- ball rgb output ball_rgb <= "100"; -- red ECE 448 – FPGA and ASIC Design with VHDL
23
Moving the Ball in VHDL (5)
-- new ball position ball_x_next <= ball_x_reg + x_delta_reg when refr_tick='1' else ball_x_reg ; ball_y_next <= ball_y_reg + y_delta_reg when refr_tick='1' else ball_y_reg ; ECE 448 – FPGA and ASIC Design with VHDL
24
Bouncing y_delta_next <= BALL_V_P x_delta_next <= BALL_V_P
x_delta_next <= BALL_V_N y_delta_next <= BALL_V_N ECE 448 – FPGA and ASIC Design with VHDL
25
Circuit calculating y_delta_next
ECE 448 – FPGA and ASIC Design with VHDL
26
Circuit calculating x_delta_next
ECE 448 – FPGA and ASIC Design with VHDL
27
Moving the Ball in VHDL (6)
process(x_delta_reg, y_delta_reg, ball_x_l, ball_x_r, ball_y_t, ball_y_b, bar_y_t, bar_y_b) begin x_delta_next <= x_delta_reg; y_delta_next <= y_delta_reg; if ball_y_t < 1 then -- reach top y_delta_next <= BALL_V_P; elsif ball_y_b >= (MAX_Y-1) then -- reach bottom y_delta_next <= BALL_V_N; elsif ball_x_l <= WALL_X_R then -- reach wall x_delta_next <= BALL_V_P; bounce back elsif (BAR_X_L<=ball_x_r) and (ball_x_r<=BAR_X_R) then -- reach x of right bar if (bar_y_t<=ball_y_b) and (ball_y_t<=bar_y_b) then x_delta_next <= BALL_V_N; --hit, bounce back end if; end process; ECE 448 – FPGA and ASIC Design with VHDL
28
Moving the Ball in VHDL (7)
process (clk, reset) begin if reset='1' then ball_x_reg <= (others=>'0'); ball_y_reg <= (others=>'0'); x_delta_reg <= BALL_V_P; y_delta_reg <= BALL_V_P; elsif (clk'event and clk='1') then ball_x_reg <= ball_x_next; ball_y_reg <= ball_y_next; x_delta_reg <= x_delta_next; y_delta_reg <= y_delta_next; end if; end process; ECE 448 – FPGA and ASIC Design with VHDL
29
Generating ref_tick in VHDL
pix_x <= unsigned(pixel_x); pix_y <= unsigned(pixel_y); -- refr_tick: 1-clock tick asserted at start of v-sync i.e., when the screen is refreshed (60 Hz) refr_tick <= '1' when (pix_y=481) and (pix_x=0) else '0'; ECE 448 – FPGA and ASIC Design with VHDL
30
Vertical Synchronization
ECE 448 – FPGA and ASIC Design with VHDL
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.