Download presentation
Presentation is loading. Please wait.
Published bySølvi Finstad Modified over 6 years ago
1
Watermarking of SAT Using Combinatorial Isolation Lemmas
Rupak Majumdar EECS Dept. University of California, Berkeley, CA Jennifer L. Wong CS Dept. University of California, Los Angeles, CA DAC, June, 2001
2
Watermarking Embedding of Information for ID or Proof of Authorship
Technique Adds Extra Constraints to the Problem Effective Intellectual Property Protection Technique
3
Boolean Satisfiability
Instance: A set of variables V and a collection C of clauses over V. Solution: A truth assignment for V such that at least one variable in each clause evaluates to true. V = {v1, v2, v3} C = {{v1, v2}, {v1’}, {v1’, v3}, {v1’, v2’, v3’}, {v3}} Solution: v1 = False v2 = True v3 = True V = {v1, v2, v3} C = {{v1, v2}, {v1’}, {v1’, v3}, {v1’, v2’, v3’}, {v3}}
4
Boolean Satisfiability
First NP-complete Problem Applications Deterministic Test Pattern Generation Delay Fault Testing Logic Verification/Synthesis FPGA Routing AI, Operations Research, Combinatorial Optimization Backtrack Search, Local Search, Algebraic Manipulation, Recursive Learning, … Watermarking Techniques Constraint-Based (Kahng ’98, Qu ‘99)
5
Fairness & Watermarking
All possible watermarking signatures of a given length result in a similar solutions space Difficulty of finding a solution after WM (given length) -> Runtime Quantify by # solutions Solution Space
6
Fairness & Watermarking
V = {v1, v2, v3, v4} C = { (v1 + v3 + v4’) (v2 + v4) (v1’+ v2+ v3’+ v4) (v2’+v3+v4’) } Embed a Signature of 4 bits Ave Solution Distance 0.85 & Ave Variance 0.21 Fair Technique
7
Credibility & Watermarking
# solutions after WM # solutions of with quality threshold Effort required to find a particular solution
8
Credibility & Watermarking
V = {v1, v2, v3, v4} C = { (v1 + v3 + v4’) (v2 + v4) (v1’+ v2+ v3’+ v4) (v2’+v3+v4’) } Embed Signatures which are Multiples of Length 4
9
Watermarking Flow
10
Isolation Lemma (Valiant & Vazirani)
If f is any CNF formula in x1, x2, …, xn and w1, …wk {0,1}n, then one can construct in linear time a formula fk’ whose satisfying assignments v satisfy f and the equations v•w1 = v•w2 = …= v•wk = 0. Furthermore, one can construct a polynomial-size CNF formula fk in variables x1, x2, …, xn,y1, …, ym for some m s.t. there is a bijection between solutions of fk and fk’ defined by equality on the values of x1, x2, …, xn. “NP is as easy as detecting unique solutions” Isolates a solution by randomized reduction
11
Unique and Fair Solutions to SAT
CNF Formula over k Variables Add Multiple Watermarks of length k Adding Additional Constraints to the Formula Let a b c denote the CNF formula (a’ V b’ V c’) (a’ V b V c) (a V b V c’) (a V b’ V c)
12
Unique and Fair Solutions to SAT
f is a CNF formula vi is the ith variable in the set V wj is the jth watermark of k-bits xy is the yth created variable f *= f ( vi1 vi2 … vij 1)
13
Unique and Fair Solutions to SAT
V = {v1, v2, v3, v4} f = { (v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} } V = {v1, v2, v3, v4} f = { {v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} }
14
Unique and Fair Solutions to SAT
V = {v1, v2, v3, v4} f = { {v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} } v1 v2 v3 v4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15
Unique and Fair Solutions to SAT
V = {v1, v2, v3, v4} f = { {v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} } Watermark = 0101 Positions of 1’s = {2, 4} f *= f ( v2 v4 1)
16
Unique and Fair Solutions to SAT
f *= f ( v2 v4 1) ( v2 v4 1) = (x1 v2 v4 ) (x1 1) Create x1 V* = {v1, v2, v3, v4, x1} (x1 v2 v4) (x1 1) {x1’,v2’, v4’} {x1’,v2, v4} {x1,v2’, v4} {x1,v2, v4’} {x2’}
17
Unique and Fair Solutions to SAT
f **= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’} {x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’}} V1 V2 V3 V4 X1 V2 V4 X1 1 1
18
Unique and Fair Solutions to SAT
V* = {v1, v2, v3, v4, x1, x2} f *= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’} {x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’}} Watermark = 0011 Positions of 1’s = {3, 4} f **= f * ( v3 v4 1)
19
Unique and Fair Solutions to SAT
f **= f * ( v3 v4 1) ( v3 v4 1) = (x2 v3 v4 ) (x2 1) Create x2 V** = {v1, v2, v3, v4, x1, x2} x2 v3 v4 x2 1 {x2’,v3’, v4’} {x2’,v3, v4} {x2,v3’, v4} {x2,v3, v4’} {x2’}
20
Unique and Fair Solutions to SAT
f **= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’} {x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’} {x2’,v3’, v4’} {x2’,v3, v4} {x2,v3’, v4} {x2,v3, v4’} {x2’} } V1 V2 V3 V4 X1 V2 V4 X1 1 X 2 V3 V4 X2 1 1
21
Experimentation Enviroment
SAT Instances DIMACS Instances Created Instance with Known # Solutions Public Domain SAT Solvers WalkSAT (Selman & Kautz ’94) GSAT (Selman & Kautz ’92) NTAB (Crawford & Auton ‘93) Rel_SAT (Bayardo & Schrag ‘97)
22
Credibility Created Instances
23
Credibility (trade-off strength & runtime) DIMACS
24
Fairness (Runtime) DIMACS
25
Fairness (Runtime) Created Instances
26
Conclusion Ultimate Fairness and Credibility
Arbitrary Problem Application Connection between Watermarking & Sound Mathematics & Theoretical Computer Science
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.