Download presentation
Presentation is loading. Please wait.
1
Lecture 11: Advanced Static ILP
Topics: loop unrolling, software pipelining (Section 4.4)
2
Loop Dependences If a loop only has dependences within an iteration, the loop is considered parallel multiple iterations can be executed together so long as order within an iteration is preserved If a loop has dependeces across iterations, it is not parallel and these dependeces are referred to as “loop-carried” Not all loop-carried dependences imply lack of parallelism Parallel loops are especially desireable in a multiprocessor system
3
Examples For (i=1000; i>0; i=i-1) x[i] = x[i] + s; No dependences
A[i+1] = A[i] + C[i]; S1 B[i+1] = B[i] + A[i+1]; S2 } S2 depends on S1 in the same iteration S1 depends on S1 from prev iteration S2 depends on S2 from prev iteration For (i=1; i<=100; i=i+1) { A[i] = A[i] + B[i]; S1 B[i+1] = C[i] + D[i]; S2 } S1 depends on S2 from prev iteration S1 depends on S1 from 3 prev iterations Referred to as a recursion Dependence distance 3; limited parallelism For (i=1000; i>0; i=i-1) x[i] = x[i-3] + s; S1
4
Finding Dependences – the GCD Test
Do A[ai + b] and A[ci + d] refer to the same element? Restrict ourselves to affine array indices (expressible as ai + b, where i is the loop index, a and b are constants) – example of non-affine index: x[y[i]] For a dependence to exist, must have two indices j and k that are within the loop bounds, such that aj + b = ck + d; aj – ck = d – b; G = GCD(a,c); (aj/G - ck/G) = (d-b)/G; If (d-b)/G is not an integer, the initial equality can not be true
5
Static vs. Dynamic ILP Loop: L.D F0, 0(R1) ; F0 = array element
ADD.D F4, F0, F ; add scalar S.D F4, 0(R1) ; store result DADDUI R1, R1,# ; decrement address pointer BNE R1, R2, Loop ; branch if R1 != R2 Loop: L.D F0, 0(R1) L.D F6, -8(R1) L.D F10,-16(R1) L.D F14, -24(R1) ADD.D F4, F0, F2 ADD.D F8, F6, F2 ADD.D F12, F10, F2 ADD.D F16, F14, F2 S.D F4, 0(R1) S.D F8, -8(R1) DADDUI R1, R1, # -32 S.D F12, 16(R1) BNE R1,R2, Loop S.D F16, 8(R1) L.D F0, 0(R1) ADD.D F4, F0, F2 S.D F4, 0(R1) DADDUI R1, R1,# -8 BNE R1, R2, Loop ….. Statically unrolled loop Large window dynamic ooo proc
6
Dynamic ILP L.D F0, 0(R1) ADD.D F4, F0, F2 S.D F4, 0(R1)
DADDUI R1, R1,# -8 BNE R1, R2, Loop L.D F0, 0(R1) ADD.D F4, F0, F2 S.D F4, 0(R1) DADDUI R3, R1,# -8 BNE R3, R2, Loop L.D F6, 0(R3) ADD.D F8, F6, F2 S.D F8, 0(R3) DADDUI R4, R3,# -8 BNE R4, R2, Loop L.D F10, 0(R4) ADD.D F12, F10, F2 S.D F12, 0(R4) DADDUI R5, R4,# -8 BNE R5, R2, Loop L.D F14, 0(R5) ADD.D F16, F14, F2 S.D F16, 0(R5) DADDUI R6, R5,# -8 BNE R6, R2, Loop Renamed
7
Dynamic ILP L.D F0, 0(R1) ADD.D F4, F0, F2 S.D F4, 0(R1)
DADDUI R1, R1,# -8 BNE R1, R2, Loop L.D F0, 0(R1) ADD.D F4, F0, F2 S.D F4, 0(R1) DADDUI R3, R1,# -8 BNE R3, R2, Loop L.D F6, 0(R3) ADD.D F8, F6, F2 S.D F8, 0(R3) DADDUI R4, R3,# -8 BNE R4, R2, Loop L.D F10, 0(R4) ADD.D F12, F10, F2 S.D F12, 0(R4) DADDUI R5, R4,# -8 BNE R5, R2, Loop L.D F14, 0(R5) ADD.D F16, F14, F2 S.D F16, 0(R5) DADDUI R6, R5,# -8 BNE R6, R2, Loop 1 3 6 2 4 7 5 8 9 Cycle of Issue Renamed
8
… … Loop Pipeline L.D ADD.D S.D DADDUI BNE L.D ADD.D S.D DADDUI BNE
9
Statically Unrolled Loop
Loop: L.D F0, 0(R1) L.D F6, -8(R1) L.D F10,-16(R1) L.D F14, -24(R1) L.D F18, -32(R1) ADD.D F4, F0, F2 L.D F22, -40(R1) ADD.D F8, F6, F2 L.D F26, -48(R1) ADD.D F12, F10, F2 L.D F30, -56(R1) ADD.D F16, F14, F2 L.D F34, -64(R1) ADD.D F20, F18, F2 S.D F4, 0(R1) L.D F38, -72(R1) ADD.D F24, F22, F2 S.D F8, -8(R1) … … S.D F12, 16(R1) S.D F16, 8(R1) DADDUI R1, R1, # -32 S.D BNE R1,R2, Loop
10
Static Vs. Dynamic New iterations completed 1 Dynamic ILP Cycles
Static ILP Cycles What if I doubled the number of resources in each processor? What if I unrolled the loop and executed it on a dynamic ILP processor?
11
Static vs. Dynamic Dynamic: because of the loop index, at most one iteration can start every cycle – even fewer if there are resource constraints – in other words, we have a pipeline that has a throughput of one iteration per cycle! Static: by eliminating loop index, each iteration is independent as many loops can start in a cycle as there are resources – however, after a while, we don’t start any more iterations – thus, loop unrolling provides a brief steady state, where an iteration starts/finishes every cycle and the rest is start-up/wind-down for each unrolled loop
12
… … Software Pipeline?! L.D ADD.D S.D DADDUI BNE L.D ADD.D S.D DADDUI
13
Software Pipelining Loop: L.D F0, 0(R1) ADD.D F4, F0, F2 S.D F4, 0(R1) DADDUI R1, R1,# -8 BNE R1, R2, Loop Loop: S.D F4, 16(R1) ADD.D F4, F0, F2 L.D F0, 0(R1) DADDUI R1, R1,# -8 BNE R1, R2, Loop Advantages: achieves nearly the same effect as loop unrolling, but without the code expansion – an unrolled loop may have inefficiencies at the start and end of each iteration, while a sw-pipelined loop is almost always in steady state – a sw-pipelined loop can also be unrolled to reduce loop overhead Disadvantages: does not reduce loop overhead, may require more registers
14
Midterm Exam Show up early! Time will be a constraint
Attempt all questions – grading will be lenient Open books and notes
15
Title Bullet
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.