Download presentation
Presentation is loading. Please wait.
Published bySilje Rønningen Modified over 6 years ago
1
Niels Bohr Institute, Nano-Science Center, University of Copenhagen
Isaac Newton Institute Workshop, Cambridge September 2004 Field Effect Transistor Behaviour in Single Wall Carbon Nanotubes and Peapods Poul Erik Lindelof Niels Bohr Institute, Nano-Science Center, University of Copenhagen 18-Sep-18 Niels Bohr Institute
2
Field Effect Transistor Behaviour in Single Wall Carbon Nanotubes and Peapods Poul Erik Lindelof Niels Bohr Institute, Nano-Science Center, University of Copenhagen Henrik Ingerslev Jørgensen, PhD student Jonas Rahlf Hauptmann, PhD-student Thomas Sand Jespersen, PhD-student Kasper Grove-Rasmussen, Ph.D.-student (p.t. visiting NTT BRL, Japan) Ane Jensen, Dr Jesper Nygård, Dr & collaboration with Andrei Khlobystov, Oxford University 18-Sep-18 Niels Bohr Institute
3
Field Effect Transistor Behaviour in Single Wall Carbon Nanotubes and Peapods
Outline of talk: Importance of contacts, Coulomb blockade, odd-even effects due to spin Zeeman splitting, ESR? Kondo effect Hybrids with GaAs Magnetic contacts Peapods, Periodic modulation Summary Notes may be nice 18-Sep-18 Niels Bohr Institute
4
3 carbon nanotubes (10,10) (15,0) (12,8) 18-Sep-18
(10,10) (15,0) (12,8) 18-Sep-18 Niels Bohr Institute
5
TEM of carbon nanotube robe
A nanotube (or two?) TEM picture 20 nm 18-Sep-18 Niels Bohr Institute
6
Assignment by Raman spectra
Thomas Sand Jespersen, MSc thesis 18-Sep-18 Niels Bohr Institute
7
Contact configuration
although carbon atoms only! Contact configuration 2-point Electrical Resistance drain Au/Ti contacts Carbon nanotube Silicondioxide (300 nm) Highly doped silicon source gate 18-Sep-18 Niels Bohr Institute
8
Contacting a SWCNT 10µm 50µm 18-Sep-18 Niels Bohr Institute
9
SWCNT, metals or semiconductors
18-Sep-18 Niels Bohr Institute
10
3 examples of Contact resistances
G300K = 0.3 e2/h G300K = 1.8 e2/h G300K = 3 e2/h It is ThreeTypesGVg.OPJ, originally made for the Kondo paper Devices: cdot, yin, metallicA T = 1K T = 100mK Theoretical maximum Gmax = 4 e2/h 18-Sep-18 Niels Bohr Institute
11
Metallic SWCNT, Temperature Dependence
P.E. Lindelof, et al., Physica Scripta T02, 22 (2002) 18-Sep-18 Niels Bohr Institute
12
Odd-Even Additional energies
D.H. Cobden and J. Nygård Phys,Rev,Lett. 89, (2002) 18-Sep-18 Niels Bohr Institute
13
Bias Spectroscopy, Zeeman splitting
P.E. Lindelof , et al., Physica Scripta T02, 22 (2002) 18-Sep-18 Niels Bohr Institute
14
Wolfgang Pauli and Niels Bohr 1951, looking at a spinning object!
18-Sep-18 Niels Bohr Institute
15
Kondo bias spectroscopy
Q E O D eV J. Nygård et al., Nature 408,342 (2000) 18-Sep-18 Niels Bohr Institute
16
Kondo temperature a b c J. Nygård et al., Nature 408, 342 (2000)
G0 (e2/h) TK (K) a b c Fig 2 abc from modified Fig2FatCompilation.OPJ Fig 2mega meg56Fat1_v2cut.hdf, meg56Fat2_cut.hdf Fig 2 IV white_I-V_and_FWHMs.OPJ J. Nygård et al., Nature 408, 342 (2000) 18-Sep-18 Niels Bohr Institute
17
Carbon nanotube inside a MBE GaAlAs single crystall
= + A. Jensen, J.Hauptmann, J, Nygård, J. Sadowski, P.E. Lindelof, Nano Letters (2004) 18-Sep-18 Niels Bohr Institute
18
Device fabrication MBE chamber MBE grown substrate:
- n-doped GaAs - insulating superlattice barrier - amorphous As cap (protection) Dispersion of single-wall nanotubes from suspension, ambient conditions 18-Sep-18 Niels Bohr Institute
19
Device fabrication MBE chamber
Epitaxal overgrowth with Ga0.95Mn0.05As by MBE at 250 C Result: nanotubes incorporated in GaAs sandwich Reloaded in the MBE chamber Desorption of As cap at 400 C, leaving the nanotubes on the clean GaAs crystal surface 18-Sep-18 Niels Bohr Institute
20
Mesa, Trench etch, SWCNTs
Trench and SWCNT 18-Sep-18 Niels Bohr Institute
21
Device architecture a) b) 7 5 4 6 3 2 1 Au/Zn (Ga,Mn)As SWNT Cr/Au
x100 2 AlAs 1 GaAs 18-Sep-18 Niels Bohr Institute
22
Configurations in various magnetic fields
18-Sep-18 Niels Bohr Institute
23
AFM scan of SWCNT between MBE grown GaAs electrodes
Single wall carbon nanotube GaAs The trench is 0.5 µm wide 18-Sep-18 Niels Bohr Institute
24
G(Vg,B) for GaMnAs-SWCNT-GaMnAs
18-Sep-18 Niels Bohr Institute
25
G(Vsd,B,T) for GaMnAs-SWCNT-GaMnAs
18-Sep-18 Niels Bohr Institute
26
Magnetoresistance of GaMnAs-SWCNT-Au
18-Sep-18 Niels Bohr Institute
27
Juliere’s model G(++)~n(1,+)n(2,+)+n(1,-)n(2,-)
P(1)=[n(1,+)-n(1,-)]/[n(1,+)+n(1,-)] DG/G=[G(++)-G(+ -)]/G(++) =2P(1)P(2)/[1+P(1)P(2)] >0 Negative magnetoresistance 18-Sep-18 Niels Bohr Institute
28
Tunnelling into two domains (Streda, unpublished)
Tt T(1,+) T(2,-)= T(2,-) T(1,+)=pT1, T(1,-)=(1-p)T1, T(2,+)=T(2,-)=T2 G(p=1)=G(+)+G(-)=T1TtT2/[Tt(T1+T2)+2T1T2] G(p=1)-G(p=½)= -G(p=1)[T1/T2 + 2T1/Tt] magnetoresistance>0 18-Sep-18 Niels Bohr Institute
29
C-60@SWCNT Peapod K. Haldrup, A.N. Khlobystov et al. 18-Sep-18
Niels Bohr Institute
30
Raman spectra a) SWCNT b) SWCNT - through treatment
c) Peapod 18-Sep-18 Niels Bohr Institute
31
Peapod Conductance vs. Vg
18-Sep-18 Niels Bohr Institute
32
G(290) vs. power law exponent. C-60@SWCNT (O) & SWCNT (l)
Haldrup, Khlobystov et al., To be published 18-Sep-18 Niels Bohr Institute
33
Nanometer periodic modulation of potential along SWCNT
Thomas Sand Jespersen, Poul Erik Lindelof, unpublished 18-Sep-18 Niels Bohr Institute
34
MBE growth of SL with guiding structures. Cleaved Edge Overgrowth
18-Sep-18 Niels Bohr Institute
35
AFM picture of cleaved and etched surface
18-Sep-18 Niels Bohr Institute
36
AFM study of 30 nm period superlattice on the cleaved edge
18-Sep-18 Niels Bohr Institute
37
Carbon nanotube decoration of CEO SL surface
18-Sep-18 Niels Bohr Institute
38
SWCNT superlattice Raman spectrum. No data for the combination yet.
18-Sep-18 Niels Bohr Institute
39
Summary The contact resistance to metallic carbon nanotubes,
Temperature dependence of electrical conductance Odd-even Coulomb blockade conductance peaks Zeeman splitting (g=2) Spin ½ co-tunneling (Kondo effect) GaAs-CNT hybrids, magnetic contacts Peapods, CEO periodic modulation 18-Sep-18 Niels Bohr Institute
40
Movie of ”spinning object”
18-Sep-18 Niels Bohr Institute
41
The ”spinning object” in action
18-Sep-18 Niels Bohr Institute
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.