Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spectral Clustering.

Similar presentations


Presentation on theme: "Spectral Clustering."โ€” Presentation transcript:

1 Spectral Clustering

2 Stochastic Block Model
The problem: suppose there are ๐‘˜ communities ๐ถ 1 , ๐ถ 2 , โ€ฆ, ๐ถ ๐‘˜ among population of ๐‘› people. The probability of two people in the same community to know each other is ๐‘, and ๐‘ž if they are from different communities. Cluster the people to communities.

3 Clustering for k=2 Only two communities, each has ๐‘› 2 people.
๐‘= ๐›ผ ๐‘› , ๐‘ž= ๐›ฝ ๐‘› ๐›ผ, ๐›ฝ=๐‘‚( log ๐‘›) Notations: ๐‘ข , ๐‘ฃ โˆ’ Centroids of ๐ถ 1 , ๐ถ 2 ๐ด ๐‘›ร—๐‘› - adjacency matrix, ๐‘Ž ๐‘–๐‘— =1 if and only if person i knows person j.

4 Clustering for k=2 ๐ธ ๐ด = ๐‘ โ‹ฏ ๐‘ ๐‘ž โ‹ฏ ๐‘ž โ‹ฎ โ‹ฑ โ‹ฎ ๐‘ ๐‘ ๐‘ž ๐‘ž ๐‘ž ๐‘ž ๐‘ ๐‘ โ‹ฎ โ‹ฑ โ‹ฎ ๐‘ž โ‹ฏ ๐‘ž ๐‘ โ‹ฏ ๐‘ In this example the first ๐‘› 2 points belong to the first cluster and the second ๐‘› 2 belong to the second one.

5 Clustering for k=2 Distance between centroids: |๐ธ[๐‘ข]โˆ’๐ธ[๐‘ฃ]| 2 = ๐›ผโˆ’๐›ฝ 2 ๐‘› Distance between data point to its centroid: ๐ธ |๐‘Ž ๐‘– โˆ’๐‘ข| 2 =๐‘› ๐‘ 1โˆ’๐‘ +๐‘ž 1โˆ’๐‘ž Proof on board

6 Variance of clustering
Definition: For a general direction v, we define 1 ๐‘› ๐‘–=0 ๐‘› ๐‘Ž ๐‘– โˆ’ ๐‘ ๐‘– ๐‘ฃ 2 as the variance of clustering in that direction. Variance of clustering is the max over all directions. ๐œŽ 2 ๐ถ = ๐‘š๐‘Ž๐‘ฅ ๐‘ฃ =1 1 ๐‘› ๐‘–=0 ๐‘› ๐‘Ž ๐‘– โˆ’ ๐‘ ๐‘– ๐‘ฃ 2 = 1 ๐‘› | ๐ดโˆ’๐ถ | 2 2

7 Spectral clustering algorithm
1. Find the top k right singular vectors of data matrix ๐ด. Then derive the best rank ๐‘˜ approximation ๐ด ๐‘˜ to ๐ด. Initialize a set ๐‘† that contains all ๐ด ๐‘˜ points. 2. Select a random point from ๐‘† and form a cluster with all ๐ด ๐‘˜ points at distance less than 6๐‘˜๐œŽ(๐ถ)๐œ€ from it. Remove all these points from ๐‘†. 3. Repeat Step 2 for ๐‘˜ iterations

8 โˆ’ ๐‘๐‘™๐‘ข๐‘ ๐‘ก๐‘’๐‘Ÿ ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ

9 โˆ’ ๐‘๐‘™๐‘ข๐‘ ๐‘ก๐‘’๐‘Ÿ ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ

10 Theorem 1 For a ๐พ-clustering ๐ถ, if the following conditions hold:
The distance between every pair of centers is at least 15๐‘˜๐œŽ ๐ถ ๐œ€ Each cluster has at least ๐œ€๐‘› points Then Spectral clustering finds clustering ๐ถโ€™ differs from ๐ถ in at most ๐œ€ 2 ๐‘› with probability of 1โˆ’ ๐œ€.

11 Proof overview Define ๐‘€ as all the points โ€œfarโ€ from a cluster center (โ€œbad pointsโ€). Upper bound the size of ๐‘€. Prove that if in step 2 of spectral clustering a โ€œgood pointโ€ is chosen, a correct cluster will be formed (maybe some points from ๐‘€ will be included) Show that the probability of all points in step 2 are good points is higher than 1โˆ’ ๐œ€

12 โˆˆ๐‘”๐‘œ๐‘œ๐‘‘ ๐‘๐‘œ๐‘–๐‘›๐‘ก๐‘  โˆˆ๐‘๐‘Ž๐‘‘ ๐‘๐‘œ๐‘–๐‘›๐‘ก๐‘  โˆ’ ๐‘๐‘™๐‘ข๐‘ ๐‘ก๐‘’๐‘Ÿ ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ

13 Bad points ๐‘€= ๐‘–: |๐‘Ž ๐‘– โˆ’ ๐‘ ๐‘– โ‰ฅ 3๐‘˜๐œŽ ๐ถ ๐œ€ } Claim: ๐‘€ โ‰ค 8 ๐œ– 2 ๐‘› 9๐‘˜ Proof on board

14 Lemma 1 Suppose ๐ด is (๐‘›ร—๐‘‘) and suppose ๐ด ๐‘˜ best approximation of ๐ด of rank ๐‘˜. for every matrix ๐ถ of rank less or equal to ๐‘˜ : ๐ด ๐‘˜ โˆ’๐ถ ๐น 2 โ‰ค 8๐‘˜๐‘› ๐œŽ 2 ๐ถ Proof on board

15 Distances between points
for ๐‘–, ๐‘— โˆ‰๐‘€ and ๐‘–,๐‘— in the same cluster: ๐‘Ž ๐‘– โˆ’ ๐‘Ž ๐‘— โ‰ค6๐‘˜ ๐œŽ ๐ถ ๐œ– for ๐‘–, ๐‘— โˆ‰๐‘€ and ๐‘–,๐‘— not in the same cluster: ๐‘Ž ๐‘– โˆ’ ๐‘Ž ๐‘— โ‰ฅ9๐‘˜ ๐œŽ ๐ถ ๐œ–

16 Lemma 2 After t iterations of step 2, as long as all points chosen so far were good, ๐‘† will contain the union of (๐‘˜โˆ’๐‘ก) clusters and a subset of ๐‘€. Proof by induction on board After k iterations, with probability (1โˆ’๐œ–), ๐‘† will only contain points from ๐‘€. Proof on board

17 Theorem 1 For a K-clustering ๐ถ, if the following conditions hold:
The distance between every pair of centers is at least 15๐‘˜๐œŽ ๐ถ ๐œ€ Each cluster has at least ๐œ€๐‘› points Then Spectral clustering finds clustering ๐ถโ€™ differs from ๐ถ in at most ๐œ€ 2 ๐‘› with probability of 1โˆ’ ๐œ€.

18 Back to SBM ๐ธ ๐ด = ๐‘ โ‹ฏ ๐‘ ๐‘ž โ‹ฏ ๐‘ž โ‹ฎ โ‹ฑ โ‹ฎ ๐‘ ๐‘ ๐‘ž ๐‘ž ๐‘ž ๐‘ž ๐‘ ๐‘ โ‹ฎ โ‹ฑ โ‹ฎ ๐‘ž โ‹ฏ ๐‘ž ๐‘ โ‹ฏ ๐‘ What are the eigenvalues and the eigenvectors?


Download ppt "Spectral Clustering."

Similar presentations


Ads by Google