Presentation is loading. Please wait.

Presentation is loading. Please wait.

ECE 3301 General Electrical Engineering

Similar presentations


Presentation on theme: "ECE 3301 General Electrical Engineering"β€” Presentation transcript:

1 ECE 3301 General Electrical Engineering
Chapter 5.3 Complex Impedances

2 Phasor Circuit Elements
Each of the circuit elements has a phasor domain representation. This representation incorporates the characteristics of resistance, inductance and capacitance.

3 Resistance Consider the resistance driven by a sinusoidal voltage source as shown below. 𝑣 𝑖 𝑅 The voltage source is described by the equation. 𝑣= 𝑉 π‘š cos πœ”π‘‘+πœ™

4 Resistance Applying Ohm’s Law reveals: 𝑣= 𝑉 π‘š cos πœ”π‘‘+πœ™
𝑖 𝑅 𝑣= 𝑉 π‘š cos πœ”π‘‘+πœ™ 𝑖= 𝑣 𝑅 = 𝑉 π‘š 𝑅 cos πœ”π‘‘+πœ™

5 The voltage and the current are β€œin phase”.
𝑣= 𝑉 π‘š cos πœ”π‘‘+πœ™ 𝑖= 𝑉 π‘š 𝑅 cos πœ”π‘‘+πœ™

6 Resistance The voltage source may be expressed in Phasor Form :
𝑣= 𝑉 π‘š cos πœ”π‘‘+πœ™ 𝑽 = 𝑉 π‘š βˆ πœ™ 𝑖= 𝑉 π‘š 𝑅 cos πœ”π‘‘+πœ™ 𝑰 = 𝑉 π‘š 𝑅 βˆ πœ™

7 Resistance Im 𝑽 = 𝑉 π‘š βˆ πœ™ 𝑰 = 𝑉 π‘š 𝑅 βˆ πœ™ πœ™ Re

8 Resistance Define the complex impedance of the resistance:
𝒁 𝑅 = 𝑽 𝑰 = 𝑉 π‘š βˆ πœ™ 𝑉 π‘š 𝑅 βˆ πœ™ 𝒁 𝑅 =𝑅

9 Resistance The complex impedance of the resistance may be graphed in Phasor form: Im 𝒁 𝑅 =𝑅 Re

10 Ohm’s Law The Phasor Domain version of Ohm’s Law is: 𝑽 = 𝑰 𝒁
For a resistance this is: 𝑽 = 𝑰 𝑅

11 Inductance Consider the inductance driven by a sinusoidal current source as shown below. 𝑣 𝑖 𝐿 The current source is described by the equation. 𝑖= 𝐼 π‘š cos πœ”π‘‘+πœ™

12 Inductance The defining characteristic of inductance: 𝑣=𝐿 𝑑𝑖 𝑑𝑑
𝑖= 𝐼 π‘š cos πœ”π‘‘+πœ™ 𝐿 𝑣=𝐿 𝑑𝑖 𝑑𝑑 𝑣=βˆ’ 𝐼 π‘š πœ”πΏ sin πœ”π‘‘+πœ™ 𝑣=βˆ’ 𝐼 π‘š πœ”πΏ cos πœ”π‘‘+πœ™βˆ’ 90 Β°

13 The voltage and the current are 90 degrees out of phase.
90Β° The voltage and the current are 90 degrees out of phase. 𝑖= 𝐼 π‘š cos πœ”π‘‘+πœ™ 𝑣=βˆ’ 𝐼 π‘š πœ”πΏ cos πœ”π‘‘+πœ™βˆ’ 90 Β°

14 Inductance The voltage and current may be expressed in Phasor Form :
𝑖= 𝐼 π‘š cos πœ”π‘‘+πœ™ 𝑰 = 𝐼 π‘š βˆ πœ™ 𝑣=βˆ’ 𝐼 π‘š πœ”πΏ cos πœ”π‘‘+πœ™βˆ’ 90 Β° 𝑽 =βˆ’ 𝐼 π‘š πœ”πΏ exp 𝑗 πœ™βˆ’ 90 Β° 𝑽 =βˆ’ 𝐼 π‘š exp βˆ’π‘— 90 Β° πœ”πΏ exp π‘—πœ™

15 Inductance Recall that: exp 𝑗 βˆ’90Β° =βˆ’π‘— 𝑽 =βˆ’ 𝐼 π‘š exp βˆ’π‘— 90 Β° πœ”πΏ exp π‘—πœ™
𝑽 = 𝐼 π‘š π‘—πœ”πΏ βˆ πœ™

16 Inductance The Phasors are: 𝑰= 𝐼 π‘š βˆ πœ™ 𝑽= 𝐼 π‘š π‘—πœ”πΏ βˆ πœ™ 𝑽= 𝐼 π‘š βˆ πœ™ πœ”πΏ ∠90Β°
𝑰= 𝐼 π‘š βˆ πœ™ 𝑽= 𝐼 π‘š π‘—πœ”πΏ βˆ πœ™ 𝑽= 𝐼 π‘š βˆ πœ™ πœ”πΏ ∠90Β° 𝑽= 𝐼 π‘š πœ”πΏ ∠(πœ™+90Β°)

17 Inductance Im 𝑽 =πœ”πΏ 𝐼 π‘š ∠ πœ™+ 90 Β° 𝑰 = 𝐼 π‘š βˆ πœ™ 90 Β° πœ™ Re

18 Inductance Define the complex impedance of the inductance:
𝒁 𝐿 = 𝑽 𝑰 = π‘—πœ”πΏ 𝐼 π‘š βˆ πœ™ 𝐼 π‘š βˆ πœ™ 𝒁 𝐿 =π‘—πœ”πΏ 𝒁 𝐿 =πœ”πΏβˆ  90 Β°

19 Inductance The complex impedance of the inductance may be graphed in Phasor form: Im 𝒁 𝐿 =π‘—πœ”πΏ=πœ”πΏβˆ  90 Β° Re

20 Inductance Note that for πœ”β†’0, 𝒁 𝐿 β†’0, and for πœ”β†’βˆž, 𝑍 𝐿 β†’βˆž.
An inductance is a short-circuit at DC and a high impedance at very high frequency. 𝒁 𝐿 =π‘—πœ”πΏ 𝒁 𝐿 =πœ”πΏβˆ  90 Β°

21 Inductance Define the Inductive Reactance. 𝑋 𝐿 =πœ”πΏ 𝒁 𝐿 =𝑗 𝑋 𝐿

22 Ohm’s Law The Phasor Domain version of Ohm’s Law is: 𝑽 = 𝐼 𝒁
For an inductance this is: 𝑽 = 𝐼 π‘—πœ”πΏ

23 Example – Time Domain Circuit
𝑣=10 cos⁑(100𝑑+30Β°) 𝑖 𝑣 𝐿=10 H Transform this circuit into Phasors:

24 Example – Phasor Domain Circuit
𝑽 =10 ∠ 30Β° 𝑰 𝑽 𝒁 𝐿 =π‘—πœ”πΏ=𝑗 =𝑗 1000 Ξ© 𝑰 = 𝑽 𝒁 𝐿 = 10 ∠ 30Β° 1000 ∠ 90Β° =0.01 βˆ βˆ’60Β° 𝑖=0.01 cos⁑(100π‘‘βˆ’60Β°)

25 Phasor Diagram Im 𝒁 𝐿 =1000 ∠ 90Β° 𝑽 =10 ∠ 30Β° (not to scale) Re
Current lags Voltage Characteristic of Inductive Circuits Re 𝑰 =0.01 ∠ βˆ’60Β°

26 𝑣=10 cos⁑(100𝑑+30Β°) 𝑖=0.01 cos⁑(100π‘‘βˆ’60Β°)

27 Capacitance Consider the capacitance driven by a sinusoidal voltage source as shown below. 𝑣 𝑖 𝐢 The voltage source is described by the equation. 𝑣= 𝑉 π‘š cos⁑(πœ”π‘‘+πœ™)

28 Capacitance The defining characteristic of capacitance:
𝑣= 𝑉 π‘š cos⁑(πœ”π‘‘+πœ™) 𝑖 𝐢 𝑖=𝐢 𝑑𝑣 𝑑𝑑 𝑖=βˆ’ 𝑉 π‘š πœ”πΆ sin⁑(πœ”π‘‘+πœ™) 𝑖=βˆ’ 𝑉 π‘š πœ”πΆ cos⁑(πœ”π‘‘+πœ™βˆ’90Β°)

29 The voltage and the current are 90 degrees out of phase.
𝑣= 𝑉 π‘š cos⁑(πœ”π‘‘+πœ™) 𝑖=βˆ’ 𝑉 π‘š πœ”πΆ cos⁑(πœ”π‘‘+πœ™βˆ’90Β°)

30 Capacitance The voltage and current may be expressed in Phasor Form :
𝑣= 𝑉 π‘š cos⁑(πœ”π‘‘+πœ™) 𝑽 = 𝑉 π‘š ∠ πœ™ 𝑖=βˆ’ 𝑉 π‘š πœ”πΆ cos⁑(πœ”π‘‘+πœ™βˆ’90Β°) 𝑰 =βˆ’ 𝑉 π‘š πœ”πΆ exp 𝑗⁑(πœ™βˆ’90Β°) 𝑰 =βˆ’ 𝑉 π‘š exp βˆ’ 𝑗 90Β° πœ”πΆ exp⁑( π‘—πœ™)

31 Capacitance Recall that: exp 𝑗 βˆ’90Β° =βˆ’π‘—
𝑰 =βˆ’ 𝑉 π‘š exp βˆ’ 𝑗 90Β° πœ”πΆ exp⁑( π‘—πœ™) 𝑰 =βˆ’ 𝑉 π‘š βˆ’π‘— πœ”πΆ exp⁑( π‘—πœ™) 𝑰 = 𝑉 π‘š π‘—πœ”πΆ exp⁑( π‘—πœ™) 𝑰 = 𝑉 π‘š π‘—πœ”πΆ βˆ πœ™

32 Capacitance The Phasors are: 𝑽 = 𝑉 π‘š ∠ πœ™ 𝑰 = 𝑉 π‘š π‘—πœ”πΆ βˆ πœ™
𝑽 = 𝑉 π‘š ∠ πœ™ 𝑰 = 𝑉 π‘š π‘—πœ”πΆ βˆ πœ™ 𝑰 = 𝑉 π‘š βˆ πœ™ πœ”πΆ ∠90Β° 𝑰 = 𝑉 π‘š πœ”πΆ ∠ (πœ™+90Β°)

33 Capacitance Im 𝑽 = 𝑉 π‘š ∠ πœ™ 𝑰 = 𝑉 π‘š πœ”πΆ ∠ πœ™+ 90 Β° 90 Β° πœ™ Re

34 Capacitance Define the complex impedance of the capacitance:
𝒁 𝐢 = 𝑽 𝑰 = 𝑉 π‘š ∠ πœ™ 𝑉 π‘š π‘—πœ”πΆ ∠ πœ™ 𝒁 𝐢 = 1 π‘—πœ”πΆ 𝒁 𝐢 = βˆ’π‘— πœ”πΆ = 1 πœ”πΆ βˆ βˆ’90Β°

35 Capacitance The complex impedance of the capacitance may be graphed in Phasor form: Im Re 𝒁 𝐢 = 1 π‘—πœ”πΆ = 1 πœ”πΆ βˆ βˆ’90Β°

36 Capacitance Note that for πœ”β†’0, 𝒁 𝐢 β†’βˆž, and for πœ”β†’βˆž, 𝑍 𝐢 β†’0.
A capacitance is an open-circuit at DC and a low impedance at very high frequency. 𝒁 𝐢 = 1 π‘—πœ”πΆ 𝒁 𝐢 = βˆ’π‘— πœ”πΆ = 1 πœ”πΆ βˆ βˆ’90Β°

37 Capacitance Define the Capacitive Reactance. 𝑋 𝐢 =βˆ’ 1 πœ”πΆ 𝒁 𝐢 =𝑗 𝑋 𝐢

38 Ohm’s Law The Phasor Domain version of Ohm’s Law is: 𝑽 = 𝑰 𝒁
For a capacitance this is: 𝑽 = 𝑰 1 π‘—πœ”πΆ

39 Example – Time Domain Circuit
𝑣=10 cos⁑(10𝑑+30Β°) 𝑖 𝐢=0.001 F Transform this circuit into Phasors:

40 Example – Phasor Domain Circuit
𝑽 =10 ∠ 30Β° 𝑖 𝒁 𝐢 = 1 π‘—πœ”πΆ = 1 𝑗(10)(0.001) =βˆ’π‘—100 Ξ© 𝐼 = 𝑉 𝑍 𝐢 = 10 ∠ 30Β° 100 ∠=βˆ’90Β° =0.1 ∠ 120Β° 𝑖=0.1 cos⁑(10𝑑+120Β°)

41 Phasor Diagram Im 𝑰 =0.1 ∠ 120Β° 𝑽 =10 ∠ 30Β° 90Β° (not to scale) 30Β°
Current leads Voltage Characteristic of Capacitive Circuits Re 𝒁=100 ∠ βˆ’90Β°

42 𝑣=10 cos⁑(10𝑑+30Β°) 𝑖=0.1 cos⁑(10𝑑+120Β°)


Download ppt "ECE 3301 General Electrical Engineering"

Similar presentations


Ads by Google