Download presentation
Presentation is loading. Please wait.
1
ECE 3301 General Electrical Engineering
Chapter 5.3 Complex Impedances
2
Phasor Circuit Elements
Each of the circuit elements has a phasor domain representation. This representation incorporates the characteristics of resistance, inductance and capacitance.
3
Resistance Consider the resistance driven by a sinusoidal voltage source as shown below. π£ π π
The voltage source is described by the equation. π£= π π cos ππ‘+π
4
Resistance Applying Ohmβs Law reveals: π£= π π cos ππ‘+π
π π
π£= π π cos ππ‘+π π= π£ π
= π π π
cos ππ‘+π
5
The voltage and the current are βin phaseβ.
π£= π π cos ππ‘+π π= π π π
cos ππ‘+π
6
Resistance The voltage source may be expressed in Phasor Form :
π£= π π cos ππ‘+π π½ = π π β π π= π π π
cos ππ‘+π π° = π π π
β π
7
Resistance Im π½ = π π β π π° = π π π
β π π Re
8
Resistance Define the complex impedance of the resistance:
π π
= π½ π° = π π β π π π π
β π π π
=π
9
Resistance The complex impedance of the resistance may be graphed in Phasor form: Im π π
=π
Re
10
Ohmβs Law The Phasor Domain version of Ohmβs Law is: π½ = π° π
For a resistance this is: π½ = π° π
11
Inductance Consider the inductance driven by a sinusoidal current source as shown below. π£ π πΏ The current source is described by the equation. π= πΌ π cos ππ‘+π
12
Inductance The defining characteristic of inductance: π£=πΏ ππ ππ‘
π= πΌ π cos ππ‘+π πΏ π£=πΏ ππ ππ‘ π£=β πΌ π ππΏ sin ππ‘+π π£=β πΌ π ππΏ cos ππ‘+πβ 90 Β°
13
The voltage and the current are 90 degrees out of phase.
90Β° The voltage and the current are 90 degrees out of phase. π= πΌ π cos ππ‘+π π£=β πΌ π ππΏ cos ππ‘+πβ 90 Β°
14
Inductance The voltage and current may be expressed in Phasor Form :
π= πΌ π cos ππ‘+π π° = πΌ π β π π£=β πΌ π ππΏ cos ππ‘+πβ 90 Β° π½ =β πΌ π ππΏ exp π πβ 90 Β° π½ =β πΌ π exp βπ 90 Β° ππΏ exp ππ
15
Inductance Recall that: exp π β90Β° =βπ π½ =β πΌ π exp βπ 90 Β° ππΏ exp ππ
π½ = πΌ π πππΏ β π
16
Inductance The Phasors are: π°= πΌ π β π π½= πΌ π πππΏ β π π½= πΌ π β π ππΏ β 90Β°
π°= πΌ π β π π½= πΌ π πππΏ β π π½= πΌ π β π ππΏ β 90Β° π½= πΌ π ππΏ β (π+90Β°)
17
Inductance Im π½ =ππΏ πΌ π β π+ 90 Β° π° = πΌ π β π 90 Β° π Re
18
Inductance Define the complex impedance of the inductance:
π πΏ = π½ π° = πππΏ πΌ π β π πΌ π β π π πΏ =πππΏ π πΏ =ππΏβ 90 Β°
19
Inductance The complex impedance of the inductance may be graphed in Phasor form: Im π πΏ =πππΏ=ππΏβ 90 Β° Re
20
Inductance Note that for πβ0, π πΏ β0, and for πββ, π πΏ ββ.
An inductance is a short-circuit at DC and a high impedance at very high frequency. π πΏ =πππΏ π πΏ =ππΏβ 90 Β°
21
Inductance Define the Inductive Reactance. π πΏ =ππΏ π πΏ =π π πΏ
22
Ohmβs Law The Phasor Domain version of Ohmβs Law is: π½ = πΌ π
For an inductance this is: π½ = πΌ πππΏ
23
Example β Time Domain Circuit
π£=10 cosβ‘(100π‘+30Β°) π π£ πΏ=10 H Transform this circuit into Phasors:
24
Example β Phasor Domain Circuit
π½ =10 β 30Β° π° π½ π πΏ =πππΏ=π =π 1000 Ξ© π° = π½ π πΏ = 10 β 30Β° 1000 β 90Β° =0.01 β β60Β° π=0.01 cosβ‘(100π‘β60Β°)
25
Phasor Diagram Im π πΏ =1000 β 90Β° π½ =10 β 30Β° (not to scale) Re
Current lags Voltage Characteristic of Inductive Circuits Re π° =0.01 β β60Β°
26
π£=10 cosβ‘(100π‘+30Β°) π=0.01 cosβ‘(100π‘β60Β°)
27
Capacitance Consider the capacitance driven by a sinusoidal voltage source as shown below. π£ π πΆ The voltage source is described by the equation. π£= π π cosβ‘(ππ‘+π)
28
Capacitance The defining characteristic of capacitance:
π£= π π cosβ‘(ππ‘+π) π πΆ π=πΆ ππ£ ππ‘ π=β π π ππΆ sinβ‘(ππ‘+π) π=β π π ππΆ cosβ‘(ππ‘+πβ90Β°)
29
The voltage and the current are 90 degrees out of phase.
π£= π π cosβ‘(ππ‘+π) π=β π π ππΆ cosβ‘(ππ‘+πβ90Β°)
30
Capacitance The voltage and current may be expressed in Phasor Form :
π£= π π cosβ‘(ππ‘+π) π½ = π π β π π=β π π ππΆ cosβ‘(ππ‘+πβ90Β°) π° =β π π ππΆ exp πβ‘(πβ90Β°) π° =β π π exp β π 90Β° ππΆ expβ‘( ππ)
31
Capacitance Recall that: exp π β90Β° =βπ
π° =β π π exp β π 90Β° ππΆ expβ‘( ππ) π° =β π π βπ ππΆ expβ‘( ππ) π° = π π πππΆ expβ‘( ππ) π° = π π πππΆ β π
32
Capacitance The Phasors are: π½ = π π β π π° = π π πππΆ β π
π½ = π π β π π° = π π πππΆ β π π° = π π β π ππΆ β 90Β° π° = π π ππΆ β (π+90Β°)
33
Capacitance Im π½ = π π β π π° = π π ππΆ β π+ 90 Β° 90 Β° π Re
34
Capacitance Define the complex impedance of the capacitance:
π πΆ = π½ π° = π π β π π π πππΆ β π π πΆ = 1 πππΆ π πΆ = βπ ππΆ = 1 ππΆ β β90Β°
35
Capacitance The complex impedance of the capacitance may be graphed in Phasor form: Im Re π πΆ = 1 πππΆ = 1 ππΆ β β90Β°
36
Capacitance Note that for πβ0, π πΆ ββ, and for πββ, π πΆ β0.
A capacitance is an open-circuit at DC and a low impedance at very high frequency. π πΆ = 1 πππΆ π πΆ = βπ ππΆ = 1 ππΆ β β90Β°
37
Capacitance Define the Capacitive Reactance. π πΆ =β 1 ππΆ π πΆ =π π πΆ
38
Ohmβs Law The Phasor Domain version of Ohmβs Law is: π½ = π° π
For a capacitance this is: π½ = π° 1 πππΆ
39
Example β Time Domain Circuit
π£=10 cosβ‘(10π‘+30Β°) π πΆ=0.001 F Transform this circuit into Phasors:
40
Example β Phasor Domain Circuit
π½ =10 β 30Β° π π πΆ = 1 πππΆ = 1 π(10)(0.001) =βπ100 Ξ© πΌ = π π πΆ = 10 β 30Β° 100 β =β90Β° =0.1 β 120Β° π=0.1 cosβ‘(10π‘+120Β°)
41
Phasor Diagram Im π° =0.1 β 120Β° π½ =10 β 30Β° 90Β° (not to scale) 30Β°
Current leads Voltage Characteristic of Capacitive Circuits Re π=100 β β90Β°
42
π£=10 cosβ‘(10π‘+30Β°) π=0.1 cosβ‘(10π‘+120Β°)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.