Download presentation
Presentation is loading. Please wait.
1
Short-Duration Gamma-Ray Burst Central Engines
Brian Metzger Princeton University In collaboration with Eliot Quataert (Berkeley) Todd Thompson (Ohio State) Tony Piro (Berkeley) Niccolo Bucciantini (Nordita) Almudena Arcones (MPIK) Gabriel Martinez-Pinedo (MPIK) Title, swift has shown distinct populations, most popular model is NS mergers, crucial for ligo, swift has also confused the issue Chandra / Einstein Fellows Symposium Harvard CfA, October
2
Gamma-Ray Bursts: Long & Short Duration
BATSE GRBs Nakar 07
3
Gamma-Ray Bursts: Long & Short Duration
BATSE GRBs Long High Redshift, zavg ~ 2 Large Energies (Eiso~ ergs) Star-Forming Host Galaxies Type Ic Broad-Line Supernovae Nakar 07
4
Gamma-Ray Bursts: Long & Short Duration
BATSE GRBs Long High Redshift, zavg ~ 2 Large Energies (Eiso~ ergs) Star-Forming Host Galaxies Type Ic Broad-Line Supernovae Nakar 07 Nakar 07 Short
5
Merging Compact Objects (NS-NS or BH-NS) Paczynski 1986; Goodman 1986; Eichler+1989; Narayan+ 1992, … t = 0.7 ms Inspiral “Chirp” Gravitational Waves t = 3 ms Shibata & Taniguchi 2006 Target for Advanced LIGO Disk left behind w/ mass ~ M & size ~ km cooling via neutrinos: ( >>1, ~ 1 )
6
Accretion-Induced Collapse (AIC)
Binary Accretion or WD-WD Merger “Failed” Type Ia SN Collapse of rapidly-rotating WD Disk around PNS: Mdisk ~ M Circinus X-1 (Chandra) Neutron Star Circinus X > 15 ! (Fender et al. 2004)
7
Similar Systems - Distinct Origins
NS-NS / BH-NS Mergers BH M ~ M R ~ 100 km Accretion-Induced Collapse NS consistent with short GRB durations
8
Short GRB Host Galaxies
GRB050509b GRB050709 z = SFR = 0.2 M yr-1 Bloom+ 06 z = SFR < 0.1 M yr-1 KECK Bloom+06 HUBBLE Fox+05 GRB050724 Berger +05 z = SFR < 0.03 M yr-1 Berger+05
9
Short GRB Host Galaxies
GRB050509b GRB050709 z = SFR = 0.2 M yr-1 Bloom +06 No Supernova! z = SFR < 0.1 M yr-1 KECK Bloom+06 HUBBLE Fox+05 Lower redshift* (z ~ 0.1-1) Eiso~ ergs* Older Progenitor Population (Consistent with being drawn from field galaxies; Berger 09) GRB050724 Berger +05 GRB050724 z = SFR < 0.03 M yr-1 Berger+05
10
Short GRBs with Extended X-Ray Emission
~25% of Swift Bursts (2 classes?) Similarity To GRB Ongoing Engine Activity EEE/EGRB ~ 1-30 ! GRB050709 GRB080503 SEE/SGRB ~ 30 Perley et al. 2008 BATSE Examples (Norris & Bonnell 2006)
11
Evolution of the Remnant Disk
Metzger, Piro, Quataert 2008, 2009 (see also Beloborodov 2009; Lee et al. 2009) Local Disk Mass r2 (M) 1-D Time-Dependent Models ( viscosity; realistic -cooling)
12
Powerful Winds Blow Apart Disk
Late-Time Outflows Metzger et al. 2008, 2009 At t ~ seconds: R ~ 500 km, M ~ 0.3 Minitial, T ~ 1 MeV } -Particle Formation Thick Disks Marginally Bound (Narayan & Yi 94; Blandford & Begelman 99) EBIND ~ GMBHmn/2R ~ 3 MeV nucleon-1 Powerful Winds Blow Apart Disk ENUC ~ 7 MeV nucleon-1 BH ~20-40% of the Initial Disk is Ejected Back into Space!
13
???
14
Tidal Tails in NS-NS/NS-BH Mergers
Lee & Ramirez-Ruiz 07 Tail(s) with ~10% prompt disk mass
15
Late-Time Fall-Back Accretion
+ (Rosswog 07; Faber+06; Lee+09) a Rosswog 07
16
r - Process Heating (not included in present simulations!)
Decompressing NS Matter A ~ 100 Nuclei + Free Neutrons (Lattimer+77; Meyer 89): Protons Neutrons Er ~ 1-3 MeV nucleon-1 released over theat ~ 1 second
17
+ r-Process Network Calculations a
Metzger, Arcones, Quataert, Martinez-Pinedo 2009 a
18
Total r-Process Heating Along Fall-Back Orbits
Orbital Period Binding Energy of Merger Ejecta
19
theat > 1 s theat < 1 s + + a a torb ~ 1 s
20
theat > 1 s theat < 1 s + + a a torb ~ 1 s No Late Fall-Back
21
+ + theat > 1 s theat < 1 s a a torb ~ 1 s “Gap”
No Late Fall-Back
22
The Effects of r-Process Heating on Fall-back Accretion
Metzger, Arcones, Quataert, Martinez-Pinedo 2009 Either: Complete Suppression of Fall-Back after t ~ 1 sec OR “Gap” of t ~ seconds opened
23
???
24
NS Magnetar Spin-Down Accretion-Induced Collapse Following:
NS-NS Merger with long-lived NS remnant NS
25
Metzger, Quataert & Thompson 08
Magnetar Spin-Down Following: Accretion-Induced Collapse NS-NS Merger with long-lived NS remnant NS High Low Internal Shock Emission Power (1051 ergs s-1) P0= 1 ms 1016 G GRB Overlaid G Metzger, Quataert & Thompson 08 ~ 1015 G
26
Conclusions Swift Revolution: Afterglows and Host Galaxies
long and short GRBs have distinct progenitors NS-NS/NS-BH Remains Promising Model consistent w/ host galaxies, durations, energetics accretion disk spreads, explodes at t ~ 1 second. ~100 second X-ray Emission = Major Problem Oft-Discussed Explanation = Fall-Back Accretion r-process heating must be taken into account either: “natural” explanation or makes matters worse AIC = Promising Alternative Model (NS Remains!)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.