Download presentation
Presentation is loading. Please wait.
1
CHE 391 T. F. Edgar Spring 2012
2
Response of Linear system
๐ =๐จ๐ (๐=0 ๐๐ ๐=โ๐ฒ๐, ๐น๐๐๐๐๐๐๐ ๐ถ๐๐๐ก๐๐๐) ๐ ๐ก 0 = ๐ 0 Solution: ๐ ๐ก = ๐ ๐จ ๐กโ ๐ก 0 ๐ ๐ก 0 ๐ ๐จ ๐กโ ๐ก 0 โ๐ฝ ๐ก, ๐ก 0 ( Transition Matrix) Usually ๐ก 0 =0 ๐ฝ ๐ก, ๐ก 0 = ๐ ๐จ๐ก =๐ฐ+๐จ๐ก+๐จโ๐จ ๐ก 2 +โฆ Computationally not feasible for general use๏ need analytical solution
3
Take Laplace Transform:
๐ ๐ฟ ๐ โ๐ 0 =๐จ๐ฟ ๐ ๐ ๐ฐโ๐จ ๐ฟ ๐ =๐ 0 ๐ฟ ๐ = ๐ ๐ฐโ๐จ โ1 ๐ 0 Take inverse Laplace Transform ๐ ๐ก = โ โ1 ๐ ๐ฐโ๐จ โ1 ๐ 0 As ๐ ๐ก =๐ฑ ๐ก ๐ฅ 0 ๐ ๐จ๐ก = โ โ1 ๐ ๐ฐโ๐จ โ1 (note scalar analog: ๐ ๐๐ก 1 ๐ โ๐ )
4
Example ๐จ= 0 1 โ2 โ3 ๐ ๐ฐโ๐จ = ๐ โ1 โ2 ๐ +3
๐จ= โ2 โ3 ๐ ๐ฐโ๐จ = ๐ โ1 โ2 ๐ +3 ๐ ๐ฐโ๐จ โ1 = ๐ +3 ๐ 2 +3๐ ๐ท โ2 ๐ท ๐ ๐ท (Here, ๐ท= ๐ +2 ๐ +1 ) Invert, partial fraction decomposition ๐ฑ ๐ก = 2 ๐ โ๐ก โ ๐ โ2๐ก ๐ โ๐ก โ ๐ โ2๐ก โ2 ๐ โ๐ก +2 ๐ โ2๐ก โ ๐ โ๐ก + 2๐ โ2๐ก
5
Note that ๐ฑ 0 =๐ฐ Also, denominator of ๐ฑ ๐ is ๐๐๐ก ๐ ๐ฐโ๐จ Roots of ๐ท are the same as the factors of characteristic equationโกeigenvalues( ๐ ๐ ) of ๐จ Eigenvalue Equation: ๐๐๐ก ๐จโ๐๐ฐ = det ๐๐ฐโ๐จ =0
6
Eigenvector/eigenvalue solution
Example: 2nd order ๐ ๐ก = ๐ 1 ๐ 1 ๐ ๐ 1 ๐ก + ๐ 2 ๐ 2 ๐ ๐ 2 ๐ก ๐ ๐ก = ๐ 1 ๐ 1 ๐ 1 ๐ ๐ 1 ๐ก + ๐ 2 ๐ 2 ๐ 2 ๐ ๐ 2 ๐ก =๐จ๐ =๐จ ๐ 1 ๐ 1 ๐ ๐ 1 ๐ก + ๐ 2 ๐ 2 ๐ ๐ 2 ๐ก Equating ๐ ๐ ๐ ๐ก terms: ๐ 1 ๐ 1 = ๐จ๐ 1 ๐ 2 ๐ 2 = ๐จ๐ 2 If ๐ ๐ , ๐ ๐ satisfy eigenvalue, eigenvector equations For nth order model, ๐จ ๐ร๐
7
๐จโ ๐ 1 โฏ ๐ ๐ โฎ โฑ โฎ. โฏ. = ๐ 1 ๐ 1 โฏ ๐ ๐ ๐ ๐ โฎ โฑ โฎ. โฏ
๐จโ ๐ 1 โฏ ๐ ๐ โฎ โฑ โฎ . โฏ . = ๐ 1 ๐ 1 โฏ ๐ ๐ ๐ ๐ โฎ โฑ โฎ . โฏ . Define ๐ฝ= matrix of eigenvectors (also called similarity transform, modal matrix, eigenvector assembly matrix) ๐ฆ= ๐ 1 0 โฆ 0 0 ๐ โฎ 0 โฑ โฎ 0 โฏ 0 ๐ ๐ ๐จ๐ฝ=๐ฝ๐ฒ๏จ ๐จ=๐ฝ๐ฒ ๐ฝ โ1 ๐๐ ๐ฒ= ๐ฝ โ1 ๐จ๐ฝ Relates ๐จ, ๐ฝ, and ๐ฒ
8
Example ๐จ= โ8 2 7 โ3 ๐ 1 =โ1, ๐ 2 =โ10, ๐ 1 = 2 7 , ๐ 2 = 1 โ1
๐จ= โ โ3 ๐ 1 =โ1, ๐ 2 =โ10, ๐ 1 = , ๐ 2 = โ1 ๐ ๐ก = โ ๐ 1 ๐ โ๐ก โ1 โ ๐ 2 ๐ โ10๐ก Note that ๐ 1 , ๐ 2 must be linearly independent (at ๐ก=0, solve for ๐ 1 , ๐ 2 ) For ๐ 0 = , we have ๐ 1 =1.11, ๐ 2 =7.78 Then, ๐ ๐ก = โ ๐ 1 ๐ โ๐ก โ7.78 โ ๐ 2 ๐ โ10๐ก Note that when ๐ก is very large, neglect the 2nd term. ๐ ๐ก =๐ ๐ก ๐ 1
9
If ๐จ is in canonical form,
๐จ= ๐ฐ ๐โ1ร๐โ1 โฎ โ ๐ 0 โ ๐ 1 โฏ โ ๐ ๐โ1 ๐ฝ= 1 1 โฏ 1 ๐ 1 ๐ 2 โฏ ๐ ๐ ๐ ๐ ๐ ๐ 2 โฎ โฎ โฑ โฎ ๐ 1 ๐โ1 ๐ 2 ๐โ1 โฏ ๐ ๐ ๐โ1 (Vandermonde Matrix) Note, if ๐ ๐ is complex, ๐ฃ ๐ is complex.
10
Another way to calculate ๐ฑ ๐ก using ๐ฝ, ๐ฒ
๐ =๐จ๐, let ๐=๐ฝ๐ (transformation), then we have ๐ฝ ๐ =๐จ๐ฝ๐ ๏จ ๐ = ๐ฝ โ1 ๐จ๐ฝ๐=๐ฒ๐ The solution for the ODE is ๐ ๐ก = ๐ ๐ฒ๐ก ๐ 0 Where ๐ ๐ฒ๐ก = ๐ ๐ 1 ๐ก ๐ ๐ 2 ๐ก โฑ ๐ ๐ ๐ ๐ก (a diagonal matrix) hence ๐ง ๐ ๐ก = ๐ ๐ ๐ ๐ก ๐ง ๐ (โmodesโ of the system) The analytical solution to ๐ =๐จ๐ is therefore ๐=๐ฝ๐=๐ฝ ๐ ๐ฒ๐ก ๐ ๐ 0 = ๐ฝ โ1 ๐ 0 ๐ ๐ก =๐ฝ ๐ ๐ฒ๐ก ๐ฝ โ1 ๐ 0 and ๐ฑ ๐ก =๐ฝ ๐ ๐ฒ๐ก ๐ฝ โ1 If ๐ ๐ are complex or repeated, modify the above procedure. (see Ogata)
11
Add controller ๐ =๐จ๐+๐ฉ๐ Substitute ๐=๐ฝ๐ , we have ๐ฝ ๐ =๐จ๐ฝ๐+๐ฉ๐ ๐ = ๐ฝ โ1 ๐จ๐ฝ๐+ ๐ฝ โ1 ๐ฉ๐=๐ฒ๐+ ๐ฝ โ1 ๐ฉ๐ Let ๐=โ๐ฒ๐ (Modal feedback. ๐=โ๐ฒ ๐ฝ โ1 ๐) ๐ = ๐ฒโ ๐ฝ โ1 ๐ฉ๐ฒ ๐ Multivariable root locus (some limitations in MIMO as in SISO โ closed-loop response depends on eigenvectors as well as eigenvalues.) Shifts eigenvalues
12
โAutonomousโ model ๐ =๐จ๐+๐ฉ๐
๐จ, ๐ฉ not functions of ๐ก; ๐, ๐ deviation variables . Take L.T., ๐ ๐ฐโ๐จ ๐ฟ ๐ =๐ฉ๐ผ ๐ ๐ฟ ๐ = ๐ ๐ฐโ๐จ โ1 ๐ฉ๐ผ ๐ If ๐ ๐ =๐ช๐ฟ ๐ (๐=๐ช๐ ) (output states or controlled variables) Then the output is ๐ ๐ =๐ช ๐ ๐ฐโ๐จ โ1 ๐ฉ๐ผ ๐ Transfer function matrix ๐ฎ ๐ ๐
13
Example: ๐ ๐ก = ๐ 1 ๐ 1 ๐ ๐ 1 ๐ก + ๐ 2 ๐ 2 ๐ ๐ 2 ๐ก ๐ 1 =โ1, ๐ 2 =โ10
๐ ๐ก = ๐ 1 ๐ 1 ๐ ๐ 1 ๐ก + ๐ 2 ๐ 2 ๐ ๐ 2 ๐ก ๐ 1 =โ1, ๐ 2 =โ10 Shift pole ๐ 1 to higher value However, if ๐ 0 is such that ๐ 1 =0, shifting ๐ 1 has no effect on response
14
Stability Requirements
Continuous: all ๐
๐ ๐ ๐ โค0 Discrete: ๐ ๐+1 =๐ญ ๐ ๐ +๐ฎ ๐ ๐ ๐ ๐ eigenvalues of ๐ญ, ๐ ๐ โค1 (for complex ๐ ๐ , all ๐ ๐ must lie within unit circle)
15
Analytical Solution: ๐ โ๐จ๐=๐ฉ๐ ๐ ๐ก ๐ = ๐ 0
๐ โ๐จ๐=๐ฉ๐ ๐ ๐ก ๐ = ๐ 0 Pre-multiply by ๐๐ฅ๐ โ๐จ๐ก =๐ โ๐จ๐ก (integrating factor) ๐๐ฅ๐ โ๐จ๐ก ๐ โ๐๐ฅ๐ โ๐จ๐ก ๐จ๐=๐๐ฅ๐ โ๐จ๐ก ๐ฉ๐ ๏จ ๐ ๐๐ก ๐๐ฅ๐ โ๐จ๐ก ๐ =๐๐ฅ๐ โ๐จ๐ก ๐ฉ๐ Integrating between ๐ก 0 and ๐ก 1 : ๐๐ฅ๐ โ๐จ ๐ก 1 ๐ 1 โ๐๐ฅ๐ โ๐จ ๐ก 0 ๐ 0 = ๐ก ๐ ๐ก 1 ๐๐ฅ๐ โ๐จ๐ก ๐ฉ๐๐๐ก ๐ ๐ก 1 = ๐ 1 =๐๐ฅ๐ ๐จ ๐ก 1 โ ๐ก 0 ๐ 0 + ๐ก ๐ ๐ก 1 ๐๐ฅ๐ ๐จ ๐ก 1 โ๐ก ๐ฉ๐ ๐ก ๐๐ก Homogenous Solution, ๐ฝ ๐ก 1 โ ๐ก 0 Particular Solution
16
If ๐ 0 =0 ๏จ convolution integral
Note that ๐ ๐ก 1 depends only on ๐ก 1 โ ๐ก 0 =โ๐ก. Let ๐ก 0 =0 ๐ โ๐ก =๐ฝ โ๐ก ๐ โ๐ก ๐ฝ โ๐กโ๐ ๐ฉ๐ ๐ ๐๐ Sampled data system: ๐ ๐ =๐ 0 (0โค๐กโคโ๐ก) Define ๐ฎ= 0 โ๐ก ๐ฝ โ๐กโ๐ ๐ฉ๐๐ ๐ โ๐ก =๐ญ๐ 0 +๐ฎ๐ 0 (๐ญ, ๐ฎ are functions of โ๐ก only ) Generalize to any time step ๐ ๏จ ๐ ๐+1 =๐ญ ๐ ๐ +๐ฎ ๐ ๐ Calculation of ๐ญ, ๐ฎ : use infinite series expression ๐ญ=๐ฐ+๐จโ๐ก+๐จโ๐จโ โ๐ก โฆ
17
๐ฎ=๐ฝ โ๐ก 0 โ๐ก ๐ฝ โ๐ ๐๐โ๐ฉ Where 0 โ๐ก ๐ฝ โ๐ ๐๐ = 0 โ๐ก ๐ โ๐จ๐ ๐๐ = ๐จ โ1 ๐ฐโ ๐ โ๐จโ๐ก = ๐จ โ1 ๐ฐโ ๐ฐโ๐จโ๐ก+๐จโ๐จโ โ๐ก 2 2 โโฆ =๐ฐโ๐กโ๐จโ โ๐ก โฆ Use finite number of terms ๐ ๐+2 =๐ญ๐ ๐+1 +๐ฎ๐ ๐+1 = ๐ญ 2 ๐ ๐ +๐ญ๐ฎ๐ ๐ +๐ฎ๐ ๐+1 ๐ ๐+๐ = ๐ญ ๐ ๐ ๐ + ๐=0 ๐โ1 ๐ญ ๐โ1โ๐ ๐ฎ๐ ๐+๐ No integration error for sampled data control (zero-order hold)
18
Discrete-time State Controllability
๐ ๐ โ ๐ญ ๐ ๐ 0 = ๐ญ ๐โ1 ๐ฎ๐ 0 + ๐ญ ๐โ2 ๐ฎ๐ 1 +โฆ+๐ฎ๐ ๐โ1 ๐ is the order of the system. We need to be able to generate any ๐ ๐ from ๐ 0 using ๐ 0 , ๐ 1 , etc. Example: ๐ข is a scalar, ๐ญ ๐ร๐ , ๐ฎ ๐ร1 , ๐ญ ๐ ๐ฎ is ๐ร1 ๐ equations, and ๐ unknowns (rank must be n, determinant โ 0. No rows, columns are linearly dependent.) Use Gaussian elimination to check controllability
19
Example: ๐ฅ 1 = ๐ฅ 2 +๐ข ๐ฅ 2 = โ๐ฅ 1 โ2๐ฅ 2 โ๐ข ๐จ= โ1 โ2 , ๐ฉ= โ1 ๐ด= ๐ฉ|๐จ๐ฉ = โ1 โ (not linear independent) Controllability Matrix: Discrete-time: ๐ด ๐ท = ๐ฎ ๐ญ๐ฎ ๐ญ 2 ๐ฎ|โฆ| ๐ญ ๐โ1 ๐ฎ Continuous-time: ๐ด ๐ถ = ๐ฉ ๐จ๐ฉ ๐จ 2 ๐ฉ|โฆ| ๐จ ๐โ1 ๐ฉ
20
Observability ๐ ๐+1 =๐ญ๐ ๐ ๐=๐ฏ๐
๐ ๐+1 =๐ญ๐ ๐ ๐=๐ฏ๐ ๐ 0 =๐ฏ๐ 0 , ๐ 2 =๐ฏ ๐ญ 2 ๐ 0 , ๐ ๐โ1 =๐ฏ ๐ญ ๐โ1 ๐ 0 Example: Suppose ๐ 0 is ๐ร1 (unknown vector), ๐ is 1ร1 (scalar) After ๐โ1 time steps, can we reconstruct ๐ 0 using ๐ values of ๐ฆ (๐ฆ 0 , ๐ฆ 1 , โฆ, ๐ฆ ๐โ1 )? In this case ๐ฏ is 1ร๐ ๐ฆ 0 ๐ฆ 1 โฎ ๐ฆ ๐โ1 = ๐ฏ ๐ฏ๐ญ โฎ ๐ฏ ๐ญ ๐โ1 ๐ 0 ๐ equations, ๐ unknowns Must have rank ๐
21
Observability Matrix Discrete: ๐ต ๐ท = ๐ฏ ๐ ๐ญ ๐ ๐ฏ ๐ โฆ| ๐ญ ๐ ๐โ1 ๐ฏ ๐
๐ต ๐ท = ๐ฏ ๐ ๐ญ ๐ ๐ฏ ๐ โฆ| ๐ญ ๐ ๐โ1 ๐ฏ ๐ must have rank ๐ Continuous: ๐ =๐จ๐, ๐=๐ช๐ ๐ต ๐ถ = ๐ช ๐ ๐จ ๐ ๐ช ๐ โฆ| ๐จ ๐ ๐โ1 ๐ช ๐
22
๐ต+๐ถ ๐ 3 ๐๐๐๐๐๐ค๐ ๐ถ๐๐๐๐๐ข๐๐๐ (๐๐๐ก ๐ต, ๐ถ, ๐๐ ๐ท)
Example ๐ด ๐ 1 ๐ต ๐ด+๐ถ ๐ 2 ๐ท ๐ต+๐ถ ๐ 3 ๐๐๐๐๐๐ค๐ ๐ถ๐๐๐๐๐ข๐๐๐ (๐๐๐ก ๐ต, ๐ถ, ๐๐ ๐ท) Linearize Equations -> deviation variables ๐ ๐ถ ๐ด ๐๐ก =โ ๐ 1 ๐ถ ๐ด โ ๐ 2 ๐ถ ๐ด ๐ถ ๐ถ ๐ ๐ถ ๐ต ๐๐ก = ๐ 1 ๐ถ ๐ด โ ๐ 3 ๐ถ ๐ต ๐ถ ๐ถ ๐ ๐ถ ๐ถ ๐๐ก =โ ๐ 2 ๐ถ ๐ด ๐ถ ๐ถ โ ๐ 3 ๐ถ ๐ต ๐ถ ๐ถ ๐ ๐ถ ๐ท ๐๐ก = ๐ 2 ๐ถ ๐ด ๐ถ ๐ถ ๐ =๐จ๐ ๐= ๐ถ ๐ด โ ๐ถ ๐ด ๐ ๐ถ ๐ต โ ๐ถ ๐ต ๐ ๐ถ ๐ถ โ ๐ถ ๐ถ ๐ ๐ถ ๐ท โ ๐ถ ๐ท ๐
23
4 linear independent columns ๏ Observable
๐จ= ๐ผ ๐ผ ๐ผ 21 ๐ผ 22 ๐ผ ๐ผ 31 ๐ผ 32 ๐ผ ๐ผ ๐ผ 43 0 Case 1: Measure A, C, D (๐=๐ช๐) ๐ช= ๐ต ๐ถ = ๐ช ๐ | ๐จ ๐ ๐ช ๐ = โ 0 โ โ โ โ 0 โ โ 4 linear independent columns ๏ Observable
24
Case 2, 3: Measure (A,B,D) , (B,C,D) ๏จObservable
Case 4: Measure A, B, C ๏จ Not observable Physical interpretation: since D does not affect any other outputs (does not appear in any rate equations), we donโt know D(0) unless it is measured directly Note: if adding ๐จ ๐ ๐ ๐ช ๐ doesnโt increase the rank of the sequence ๐ช ๐ , ๐จ ๐ ๐ช ๐ , ๐จ ๐ 2 ๐ช ๐ , โฆ , you donโt need to check any further. (Same for controllability).
25
Other Controllability Considerations
Modal equation: ๐ =๐ฒ๐+ ๐ฝ โ1 ๐ฉ๐ ๐ฝ โ1 ๐ฉ must not have a null row (must be able to control all modes) (2) ๐๐๐ ๐ ๐ฐโ๐จ must have no common factor with det ๐ ๐ฐโ๐จ (3) For non-distinct eigenvalues, rules must be modified; (4) Output controllability of system ๐ =๐จ๐+๐ฉ๐ , ๐=๐ช๐+๐ซ๐ (usually ๐ซ=๐ถ, ๐ช ๐ร๐ , ๐ ๐ร1 ) ๐๐๐๐ ๐ช๐ฉ ๐ช๐จ๐ฉ ๐ช ๐จ 2 ๐ฉ|โฆ =๐
26
MIMO Model Linearization
Nonlinear model: ๐ =๐ ๐,๐ ๐: state variable (๐ร1) ๐: decision variable (๐ร1) Linearization๏ define deviation variables: ๐=๐โ ๐ ๐ ๐ ๐=๐โ ๐ ๐ ๐ (Requires iterative solution of ๐ ๐ ๐ ๐ , ๐ ๐ ๐ =0)
27
Analytical vs. numerical
Use 1st order Taylor Series (invalid for large ๐, ๐) Scalar case: ๐ง = ๐ฅ =๐ ๐ง ๐ ๐ , ๐ฃ ๐ ๐ + ๐๐ ๐๐ง ๐ ๐ ๐งโ ๐ง ๐ ๐ + ๐๐ ๐๐ฃ ๐ ๐ ๐ฃโ ๐ฃ ๐ ๐ = ๐๐ ๐๐ง ๐ ๐ ๐ฅ + ๐๐ ๐๐ฃ ๐ ๐ ๐ข Vector case: ๐ =๐จ๐+๐ฉ๐ ๐จ ๐ร๐ = ๐ ๐ ๐ ๐ ๐ง ๐ ๐ ๐ (๐ฝ๐๐๐๐๐๐๐), ๐ฉ ๐ร๐ = ๐ ๐ ๐ ๐ ๐ฃ ๐ ๐ ๐ Analytical vs. numerical
28
Minimal State Vector Representation (MIMO Systems)
๐ =๐จ๐+๐ฉ๐ ๐=๐ฝ๐ ๏ ๐ฝ ๐ =๐จ๐ฝ๐+๐ฉ๐ ๐ = ๐ฝ โ1 ๐จ๐ฝ๐+ ๐ฝ โ1 ๐ฉ๐=๐ฒ๐+ ๐ฝ โ1 ๐ฉ๐ ๐ ๐ฐโ๐ฒ ๐ ๐ = ๐ฝ โ1 ๐ฉ๐ผ ๐ ๐ ๐ = ๐ ๐ฐโ๐ฒ โ1 ๐ฝ โ1 ๐ฉ๐ผ ๐ , ๐ฝ โ1 ๐ฟ ๐ =๐ ๐ ๐ฝ โ1 ๐ฟ ๐ = ๐ ๐ฐโ๐ฒ โ1 ๐ฝ โ1 ๐ฉ๐ผ ๐ ๐ฟ ๐ =๐ฝ ๐ ๐ฐโ๐ฒ โ1 ๐ฝ โ1 ๐ฉ๐ผ ๐ ๐ ๐ =๐ช๐ฟ ๐ =๐ช๐ฝ ๐ ๐ฐโ๐ฒ โ1 ๐ฝ โ1 ๐ฉ๐ผ ๐ Make ๐ช๐ฝ=๐ธ, ๐ฝ โ1 ๐ฉ=๐ฌ, then the transfer function is ๐ฎ ๐ ๐ =๐ช๐ฝ ๐ ๐ฐโ๐ฒ โ1 ๐ฝ โ1 ๐ฉ=๐ธ ๐ ๐ฐโ๐ฒ โ1 ๐ฌ Question: Given ๐ฎ ๐ ๐ , how do we find ๐จ, ๐ฉ, ๐ช which gives a model of minimal order? (or given step response for all inputs/outputs)
29
Example: 2ร2 (Second order)
๐ฎ ๐ ๐ = 2๐ +11 ๐ +4 ๐ +2 ๐ +6 ๐ +4 ๐ +2 ๐ โ5 ๐ +4 ๐ +2 ๐ โ2 ๐ +4 ๐ +2 =๐ธ ๐ ๐ฐโ๐ฒ โ1 ๐ฌ= ๐พ 11 ๐พ 12 ๐พ 21 ๐พ ๐ โ ๐ ๐ โ ๐ ๐ธ 11 ๐ธ 12 ๐ธ 21 ๐ธ 22 = ๐ธ 11 ๐พ 11 ๐ โ ๐ ๐ธ 21 ๐พ 12 ๐ โ ๐ ๐ธ 12 ๐พ 11 ๐ โ ๐ ๐ธ 22 ๐พ 12 ๐ โ ๐ ๐ธ 11 ๐พ 21 ๐ โ ๐ ๐ธ 21 ๐พ 22 ๐ โ ๐ ๐ธ 12 ๐พ 21 ๐ โ ๐ ๐ธ 22 ๐พ 22 ๐ โ ๐ 2 (2 poles => 2nd order, 2ร2)
30
Expand ๐ฎ ๐ ๐ by partial fraction expansion ๐ฎ ๐ ๐ = โ 3 2 ๐ ๐ +2 โ1 ๐ ๐ ๐ +4 โ 7 2 ๐ +2 3 ๐ +4 โ 2 ๐ +2 Matching coefficients, ๐ธ 11 ๐พ 11 ๐ธ 12 ๐พ 11 ๐ธ 11 ๐พ 21 ๐ธ 12 ๐พ 21 = โ3 2 โ Let ๐พ 11 =1, then ๐ธ 11 = โ3 2 , ๐ธ 12 =โ1, ๐พ 21 =โ3 ๐ธ 21 ๐พ 12 ๐ธ 22 ๐พ 12 ๐ธ 21 ๐พ 22 ๐ธ 22 ๐พ 22 = โ7 2 โ2 Let ๐พ 12 =1, then ๐ธ 21 = 7 2 , ๐ธ 22 =2, ๐พ 22 =โ1
31
Therefore ๐ฌ= ๐ฝ โ1 ๐ฉ= โ3 2 โ โ (1) ๐ธ=๐ช๐ฝ= โ3 โ (2) Assume ๐ช, calculate ๐ฝ in Eq. (2); Using ๐ฝ โ1 , find ๐ฉ in Eq.(1); ๐จ=๐ฝ๐ฒ ๐ฝ โ1 . Note that there is an infinite number of realizations to yield ๐ฎ ๐ ๐
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.