Download presentation
Presentation is loading. Please wait.
1
CS 3343: Analysis of Algorithms
Review for final 9/18/2018
2
Review for finals In chronological order
Only the more important concepts Very likely to appear in your final Does not mean to be exclusive 9/18/2018
3
Asymptotic notations O: Big-Oh Ω: Big-Omega Θ: Theta o: Small-oh
ω: Small-omega Intuitively: O is like o is like < is like is like > is like = 9/18/2018
4
Big-Oh Math: Engineering:
O(g(n)) = {f(n): positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) n>n0} Or: lim n→∞ g(n)/f(n) > 0 (if the limit exists.) Engineering: g(n) grows at least as faster as f(n) g(n) is an asymptotic upper bound of f(n) Intuitively it is like f(n) ≤ g(n) 9/18/2018
5
Big-Oh Claim: f(n) = 3n2 + 10n + 5 O(n2) Proof:
3n2 + 10n + 5 3n2 + 10n2 + 5n2 when n > 18 n2 when n > 1 Therefore, Let c = 18 and n0 = 1 We have f(n) c n2, n > n0 By definition, f(n) O(n2) 9/18/2018
6
Big-Omega Math: Engineering:
Ω(g(n)) = {f(n): positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) n>n0} Or: lim n→∞ f(n)/g(n) > 0 (if the limit exists.) Engineering: f(n) grows at least as faster as g(n) g(n) is an asymptotic lower bound of f(n) Intuitively it is like g(n) ≤ f(n) 9/18/2018
7
Big-Omega f(n) = n2 / 10 = Ω(n) Proof: f(n) = n2 / 10, g(n) = n
g(n) = n ≤ n2 / 10 = f(n) when n > 10 Therefore, c = 1 and n0 = 10 9/18/2018
8
Theta Math: Engineering: Θ(1) means constant time.
Θ(g(n)) = {f(n): positive constants c1, c2, and n0 such that c1 g(n) f(n) c2 g(n) n n0 n>n0} Or: lim n→∞ f(n)/g(n) = c > 0 and c < ∞ Or: f(n) = O(g(n)) and f(n) = Ω(g(n)) Engineering: f(n) grows in the same order as g(n) g(n) is an asymptotic tight bound of f(n) Intuitively it is like f(n) = g(n) Θ(1) means constant time. 9/18/2018
9
Theta Claim: f(n) = 2n2 + n = Θ (n2) Proof:
We just need to find three constants c1, c2, and n0 such that c1n2 ≤ 2n2+n ≤ c2n2 for all n > n0 A simple solution is c1 = 2, c2 = 3, and n0 = 1 9/18/2018
10
Using limits to compare orders of growth
lim f(n) / g(n) = c > 0 ∞ f(n) o(g(n)) f(n) O(g(n)) f(n) Θ (g(n)) n→∞ f(n) Ω(g(n)) f(n) ω (g(n)) 9/18/2018
11
Therefore, 2n o(3n), and 3n ω(2n)
Compare 2n and 3n lim 2n / 3n = lim(2/3)n = 0 Therefore, 2n o(3n), and 3n ω(2n) n→∞ n→∞ 9/18/2018
12
∞ Compare n0.5 and log n lim n0.5 / log n = ? (n0.5)’ = 0.5 n-0.5
lim (n-0.5 / 1/n) = lim(n0.5) = Therefore, log n o(n0.5) n→∞ ∞ 9/18/2018
13
Compare 2n and n! Therefore, 2n = o(n!) 9/18/2018
14
More advanced dominance ranking
9/18/2018
15
General plan for analyzing time efficiency of a non-recursive algorithm
Decide parameter (input size) Identify most executed line (basic operation) worst-case = average-case? T(n) = i ti T(n) = Θ (f(n)) 9/18/2018
16
Analysis of insertion Sort
Statement cost time__ InsertionSort(A, n) { for j = 2 to n { c1 n key = A[j] c2 (n-1) i = j - 1; c3 (n-1) while (i > 0) and (A[i] > key) { c4 S A[i+1] = A[i] c5 (S-(n-1)) i = i c6 (S-(n-1)) } A[i+1] = key c7 (n-1) } } 9/18/2018
17
Inner loop stops when A[i] <= key, or i = 0
Best case Inner loop stops when A[i] <= key, or i = 0 1 i j Key sorted Array already sorted 9/18/2018
18
Inner loop stops when A[i] <= key
Worst case Inner loop stops when A[i] <= key 1 i j Key sorted Array originally in reverse order 9/18/2018
19
Inner loop stops when A[i] <= key
Average case Inner loop stops when A[i] <= key 1 i j Key sorted Array in random order 9/18/2018
20
Find the order of growth for sums
How to find out the actual order of growth? Remember some formulas Learn how to guess and prove 9/18/2018
21
Closed form, or explicit formula
Arithmetic series An arithmetic series is a sequence of numbers such that the difference of any two successive members of the sequence is a constant. e.g.: 1, 2, 3, 4, 5 or 10, 12, 14, 16, 18, 20 In general: Recursive definition Closed form, or explicit formula Or: 9/18/2018
22
Sum of arithmetic series
If a1, a2, …, an is an arithmetic series, then 9/18/2018
23
Closed form, or explicit formula
Geometric series A geometric series is a sequence of numbers such that the ratio between any two successive members of the sequence is a constant. e.g.: 1, 2, 4, 8, 16, 32 or 10, 20, 40, 80, 160 or 1, ½, ¼, 1/8, 1/16 In general: Recursive definition Closed form, or explicit formula Or: 9/18/2018
24
Sum of geometric series
if r < 1 if r > 1 if r = 1 9/18/2018
25
Important formulas 9/18/2018
26
Sum manipulation rules
Example: 9/18/2018
27
Recursive algorithms General idea: Divide and Conquer
Divide a large problem into smaller ones By a constant ratio By a constant or some variable Solve each smaller one recursively or explicitly Combine the solutions of smaller ones to form a solution for the original problem Divide and Conquer 9/18/2018
28
How to analyze the time-efficiency of a recursive algorithm?
Express the running time on input of size n as a function of the running time on smaller problems 9/18/2018
29
Analyzing merge sort T(n) MERGE-SORT A[1 . . n] Θ(1) 2T(n/2)
f(n) MERGE-SORT A[1 . . n] If n = 1, done. Recursively sort A[ n/2 ] and A[ n/2 n ] . “Merge” the 2 sorted lists Sloppiness: Should be T( n/2 ) + T( n/2 ) , but it turns out not to matter asymptotically. 9/18/2018
30
Analyzing merge sort T(n) = 2 T(n/2) + f(n) +Θ(1) Divide: Trivial.
Conquer: Recursively sort 2 subarrays. Combine: Merge two sorted subarrays T(n) = 2 T(n/2) + f(n) +Θ(1) # subproblems Work dividing and Combining subproblem size What is the time for the base case? What is f(n)? What is the growth order of T(n)? Constant 9/18/2018
31
Solving recurrence Running time of many algorithms can be expressed in one of the following two recursive forms or Challenge: how to solve the recurrence to get a closed form, e.g. T(n) = Θ (n2) or T(n) = Θ(nlgn), or at least some bound such as T(n) = O(n2)? 9/18/2018
32
Solving recurrence Recurrence tree (iteration) method
- Good for guessing an answer Substitution method - Generic method, rigid, but may be hard Master method - Easy to learn, useful in limited cases only - Some tricks may help in other cases 9/18/2018
33
The master method The master method applies to recurrences of the form
T(n) = a T(n/b) + f (n) , where a ³ 1, b > 1, and f is asymptotically positive. Divide the problem into a subproblems, each of size n/b Conquer the subproblems by solving them recursively. Combine subproblem solutions Divide + combine takes f(n) time. 9/18/2018
34
e.g.: merge sort: T(n) = 2 T(n/2) + Θ(n)
Master theorem T(n) = a T(n/b) + f (n) Key: compare f(n) with nlogba CASE 1: f (n) = O(nlogba – e) T(n) = Q(nlogba) . CASE 2: f (n) = Q(nlogba) T(n) = Q(nlogba log n) . CASE 3: f (n) = W(nlogba + e) and a f (n/b) £ c f (n) T(n) = Q( f (n)) . e.g.: merge sort: T(n) = 2 T(n/2) + Θ(n) a = 2, b = 2 nlogba = n CASE 2 T(n) = Θ(n log n) . 9/18/2018
35
Case 1 Compare f (n) with nlogba:
f (n) = O(nlogba – e) for some constant e > 0. : f (n) grows polynomially slower than nlogba (by an ne factor). Solution: T(n) = Q(nlogba) i.e., aT(n/b) dominates e.g. T(n) = 2T(n/2) + 1 T(n) = 4 T(n/2) + n T(n) = 2T(n/2) + log n T(n) = 8T(n/2) + n2 9/18/2018
36
Case 3 Compare f (n) with nlogba:
f (n) = W (nlogba + e) for some constant e > 0. : f (n) grows polynomially faster than nlogba (by an ne factor). Solution: T(n) = Q(f(n)) i.e., f(n) dominates e.g. T(n) = T(n/2) + n T(n) = 2 T(n/2) + n2 T(n) = 4T(n/2) + n3 T(n) = 8T(n/2) + n4 9/18/2018
37
Case 2 Compare f (n) with nlogba: f (n) = Q (nlogba).
: f (n) and nlogba grow at similar rate. Solution: T(n) = Q(nlogba log n) e.g. T(n) = T(n/2) + 1 T(n) = 2 T(n/2) + n T(n) = 4T(n/2) + n2 T(n) = 8T(n/2) + n3 9/18/2018
38
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
9/18/2018
39
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
9/18/2018
40
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
9/18/2018
41
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
9/18/2018
42
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
… Q(1) 9/18/2018
43
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
h = log n dn/4 dn/4 dn/4 dn/4 … Q(1) 9/18/2018
44
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
h = log n dn/4 dn/4 dn/4 dn/4 … Q(1) 9/18/2018
45
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
h = log n dn/4 dn/4 dn/4 dn/4 … Q(1) 9/18/2018
46
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
h = log n dn/4 dn/4 dn/4 dn/4 dn … … Q(1) 9/18/2018
47
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
h = log n dn/4 dn/4 dn/4 dn/4 dn … … Q(1) #leaves = n Q(n) 9/18/2018
48
Recursion tree Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
h = log n dn/4 dn/4 dn/4 dn/4 dn … … Q(1) #leaves = n Q(n) Total Q(n log n) 9/18/2018
49
Substitution method The most general method to solve a recurrence (prove O and separately): Guess the form of the solution: (e.g. using recursion trees, or expansion) Verify by induction (inductive step). 9/18/2018
50
Proof by substitution Recurrence: T(n) = 2T(n/2) + n.
Guess: T(n) = O(n log n). (eg. by recurrence tree method) To prove, have to show T(n) ≤ c n log n for some c > 0 and for all n > n0 Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means: Fact: T(n) = 2T(n/2) + n Assumption: T(n/2)≤ cn/2 log (n/2) Need to Prove: T(n)≤ c n log (n) 9/18/2018
51
Proof Fact: T(n) = 2T(n/2) + n Assumption: T(n/2)≤ cn/2 log (n/2)
Need to Prove: T(n)≤ c n log (n) Proof: Substitute T(n/2) into the recurrence function => T(n) = 2 T(n/2) + n ≤ cn log (n/2) + n => T(n) ≤ c n log n - c n + n => T(n) ≤ c n log n (if we choose c ≥ 1). 9/18/2018
52
Proof by substitution Recurrence: T(n) = 2T(n/2) + n.
Guess: T(n) = Ω(n log n). To prove, have to show T(n) ≥ c n log n for some c > 0 and for all n > n0 Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means: Fact: Assumption: Need to Prove: T(n) ≥ c n log (n) T(n) = 2T(n/2) + n T(n/2) ≥ cn/2 log (n/2) 9/18/2018
53
Proof Fact: T(n) = 2T(n/2) + n Assumption: T(n/2) ≥ cn/2 log (n/2)
Need to Prove: T(n) ≥ c n log (n) Proof: Substitute T(n/2) into the recurrence function => T(n) = 2 T(n/2) + n ≥ cn log (n/2) + n => T(n) ≥ c n log n - c n + n => T(n) ≥ c n log n (if we choose c ≤ 1). 9/18/2018
54
Quick sort Quicksort an n-element array:
Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray £ x £ elements in upper subarray. Conquer: Recursively sort the two subarrays. Combine: Trivial. £ x x ≥ x Key: Linear-time partitioning subroutine. 9/18/2018
55
Partition All the action takes place in the partition() function £ x x
Rearranges the subarray in place End result: two subarrays All values in first subarray all values in second Returns the index of the “pivot” element separating the two subarrays p q r £ x x ≥ x 9/18/2018
56
Partition Code What is the running time of partition()?
Partition(A, p, r) x = A[p]; // pivot is the first element i = p; j = r + 1; while (TRUE) { repeat i++; until A[i] > x or i >= j; j--; until A[j] < x or j < i; if (i < j) Swap (A[i], A[j]); else break; } swap (A[p], A[j]); return j; What is the running time of partition()? partition() runs in O(n) time 9/18/2018
57
p r 6 10 5 8 13 3 2 11 x = 6 i j 6 10 5 8 13 3 2 11 i j 6 2 5 8 13 3 10 11 i j 6 2 5 8 13 3 10 11 i j 6 2 5 3 13 8 10 11 i j 6 2 5 3 13 8 10 11 j i p q r 3 2 5 6 13 8 10 11 9/18/2018
58
6 10 5 8 11 3 2 13 3 2 5 6 11 8 10 13 2 3 5 6 10 8 11 13 2 3 5 6 8 10 11 13 2 3 5 6 8 10 11 13 9/18/2018
59
Quicksort Runtimes Best case runtime Tbest(n) O(n log n)
Worst case runtime Tworst(n) O(n2) Worse than mergesort? Why is it called quicksort then? Its average runtime Tavg(n) O(n log n ) Better even, the expected runtime of randomized quicksort is O(n log n) 9/18/2018
60
Randomized quicksort Randomly choose an element as pivot
Every time need to do a partition, throw a die to decide which element to use as the pivot Each element has 1/n probability to be selected Partition(A, p, r) d = random(); // a random number between 0 and 1 index = p + floor((r-p+1) * d); // p<=index<=r swap(A[p], A[index]); x = A[p]; i = p; j = r + 1; while (TRUE) { … } 9/18/2018
61
Running time of randomized quicksort
T(0) + T(n–1) + dn if 0 : n–1 split, T(1) + T(n–2) + dn if 1 : n–2 split, M T(n–1) + T(0) + dn if n–1 : 0 split, T(n) = The expected running time is an average of all cases Expectation 9/18/2018
62
Heaps In practice, heaps are usually implemented as arrays: 16 14 10 8
7 9 3 2 4 1 16 14 10 8 7 9 3 2 4 1 9/18/2018
63
Heaps To represent a complete binary tree as an array:
The root node is A[1] Node i is A[i] The parent of node i is A[i/2] (note: integer divide) The left child of node i is A[2i] The right child of node i is A[2i + 1] 16 14 10 8 7 9 3 2 4 1 A = 16 14 10 8 7 9 3 2 4 1 = 9/18/2018
64
The Heap Property Heaps also satisfy the heap property:
A[Parent(i)] A[i] for all nodes i > 1 In other words, the value of a node is at most the value of its parent The value of a node should be greater than or equal to both its left and right children And all of its descendents Where is the largest element in a heap stored? 9/18/2018
65
Heap Operations: Heapify()
Heapify(A, i) { // precondition: subtrees rooted at l and r are heaps l = Left(i); r = Right(i); if (l <= heap_size(A) && A[l] > A[i]) largest = l; else largest = i; if (r <= heap_size(A) && A[r] > A[largest]) largest = r; if (largest != i) { Swap(A, i, largest); Heapify(A, largest); } } // postcondition: subtree rooted at i is a heap Among A[l], A[i], A[r], which one is largest? If violation, fix it. 9/18/2018
66
Heapify() Example 16 4 10 14 7 9 3 2 8 1 A = 16 4 10 14 7 9 3 2 8 1 9/18/2018
67
Heapify() Example 16 4 10 14 7 9 3 2 8 1 A = 16 4 10 14 7 9 3 2 8 1 9/18/2018
68
Heapify() Example 16 4 10 14 7 9 3 2 8 1 A = 16 4 10 14 7 9 3 2 8 1 9/18/2018
69
Heapify() Example 16 14 10 4 7 9 3 2 8 1 A = 16 14 10 4 7 9 3 2 8 1 9/18/2018
70
Heapify() Example 16 14 10 4 7 9 3 2 8 1 A = 16 14 10 4 7 9 3 2 8 1 9/18/2018
71
Heapify() Example 16 14 10 8 7 9 3 2 4 1 A = 16 14 10 8 7 9 3 2 4 1 9/18/2018
72
Heapify() Example 16 14 10 8 7 9 3 2 4 1 A = 16 14 10 8 7 9 3 2 4 1 9/18/2018
73
Analyzing Heapify(): Formal
T(n) T(2n/3) + (1) By case 2 of the Master Theorem, T(n) = O(lg n) Thus, Heapify() takes logarithmic time 9/18/2018
74
Heap Operations: BuildHeap()
We can build a heap in a bottom-up manner by running Heapify() on successive subarrays Fact: for array of length n, all elements in range A[n/2 n] are heaps (Why?) So: Walk backwards through the array from n/2 to 1, calling Heapify() on each node. Order of processing guarantees that the children of node i are heaps when i is processed 9/18/2018
75
BuildHeap() // given an unsorted array A, make A a heap BuildHeap(A) {
heap_size(A) = length(A); for (i = length[A]/2 downto 1) Heapify(A, i); } 9/18/2018
76
BuildHeap() Example Work through example A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7} 4 1 3 2 16 9 10 14 8 7 9/18/2018
77
4 1 3 2 16 9 10 14 8 7 9/18/2018
78
4 1 3 14 16 9 10 2 8 7 9/18/2018
79
4 1 10 14 16 9 3 2 8 7 9/18/2018
80
4 16 10 14 7 9 3 2 8 1 9/18/2018
81
16 14 10 8 7 9 3 2 4 1 9/18/2018
82
Analyzing BuildHeap(): Tight
To Heapify() a subtree takes O(h) time where h is the height of the subtree h = O(lg m), m = # nodes in subtree The height of most subtrees is small Fact: an n-element heap has at most n/2h+1 nodes of height h CLR 7.3 uses this fact to prove that BuildHeap() takes O(n) time 9/18/2018
83
Heapsort Example Work through example A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7} 4 1 3 2 16 9 10 14 8 7 A = 4 1 3 2 16 9 10 14 8 7 9/18/2018
84
Heapsort Example First: build a heap 16 14 10 8 7 9 3 2 4 1 A = 16 14
9/18/2018
85
Heapsort Example Swap last and first 1 14 10 8 7 9 3 2 4 16 A = 1 14
9/18/2018
86
Heapsort Example Last element sorted 1 14 10 8 7 9 3 2 4 16 A = 1 14
9/18/2018
87
Heapsort Example Restore heap on remaining unsorted elements 14 8 10 4
7 9 3 2 1 16 Heapify A = 14 8 10 4 7 9 3 2 1 16 9/18/2018
88
Heapsort Example Repeat: swap new last and first 1 8 10 4 7 9 3 2 14
16 A = 1 8 10 4 7 9 3 2 14 16 9/18/2018
89
Heapsort Example Restore heap 10 8 9 4 7 1 3 2 14 16 A = 10 8 9 4 7 1
9/18/2018
90
Heapsort Example Repeat 9 8 3 4 7 1 2 10 14 16 A = 9 8 3 4 7 1 2 10 14
9/18/2018
91
Heapsort Example Repeat 8 7 3 4 2 1 9 10 14 16 A = 8 7 3 4 2 1 9 10 14
9/18/2018
92
Heapsort Example Repeat 1 2 3 4 7 8 9 10 14 16 A = 1 2 3 4 7 8 9 10 14
9/18/2018
93
Analyzing Heapsort The call to BuildHeap() takes O(n) time
Each of the n - 1 calls to Heapify() takes O(lg n) time Thus the total time taken by HeapSort() = O(n) + (n - 1) O(lg n) = O(n) + O(n lg n) = O(n lg n) 9/18/2018
94
HeapExtractMax Example
16 14 10 8 7 9 3 2 4 1 A = 16 14 10 8 7 9 3 2 4 1 9/18/2018
95
HeapExtractMax Example
Swap first and last, then remove last 1 14 10 8 7 9 3 2 4 16 A = 1 14 10 8 7 9 3 2 4 16 9/18/2018
96
HeapExtractMax Example
Heapify 14 8 10 4 7 9 3 2 1 16 A = 14 8 10 4 7 9 3 2 1 16 9/18/2018
97
HeapChangeKey Example
Increase key 16 14 10 8 7 9 3 2 4 1 A = 16 14 10 8 7 9 3 2 4 1 9/18/2018
98
HeapChangeKey Example
Increase key 16 14 10 15 7 9 3 2 4 1 A = 16 14 10 15 7 9 3 2 4 1 9/18/2018
99
HeapChangeKey Example
Increase key 16 15 10 14 7 9 3 2 4 1 A = 16 15 10 14 7 9 3 2 4 1 9/18/2018
100
HeapInsert Example HeapInsert(A, 17) 16 14 10 8 7 9 3 2 4 1 A = 16 14
9/18/2018
101
HeapInsert Example HeapInsert(A, 17) -∞ -∞ -∞ makes it a valid heap 16
14 10 8 7 9 3 2 4 1 -∞ -∞ makes it a valid heap A = 16 14 10 8 7 9 3 2 4 1 -∞ 9/18/2018
102
HeapInsert Example HeapInsert(A, 17) Now call changeKey 16 14 10 8 7 9
3 2 4 1 17 Now call changeKey A = 16 14 10 8 7 9 3 2 4 1 17 9/18/2018
103
HeapInsert Example HeapInsert(A, 17) 17 16 10 8 14 9 3 2 4 1 7 A = 17
9/18/2018
104
HeapExtractMax: Θ(log n) HeapChangeKey: Θ(log n) HeapInsert: Θ(log n)
Heapify: Θ(log n) BuildHeap: Θ(n) HeapSort: Θ(nlog n) HeapMaximum: Θ(1) HeapExtractMax: Θ(log n) HeapChangeKey: Θ(log n) HeapInsert: Θ(log n) 9/18/2018
105
Counting sort for i 1 to k do C[i] 0 for j 1 to n
1. for i 1 to k do C[i] 0 for j 1 to n do C[A[ j]] C[A[ j]] + 1 ⊳ C[i] = |{key = i}| for i 2 to k do C[i] C[i] + C[i–1] ⊳ C[i] = |{key £ i}| for j n downto 1 do B[C[A[ j]]] A[ j] C[A[ j]] C[A[ j]] – 1 Initialize 2. Count 3. Compute running sum 4. Re-arrange 9/18/2018
106
Counting sort A: 4 1 3 4 3 C: 1 2 2 B: C': 1 1 3 5 for i 2 to k
2 2 B: C': 1 1 3 5 3. for i 2 to k do C[i] C[i] + C[i–1] ⊳ C[i] = |{key £ i}| 9/18/2018
107
Loop 4: re-arrange A: 4 1 3 4 3 C: 1 1 3 5 B: 3 C': 1 1 3 5
2 3 4 5 1 2 3 4 A: 4 1 3 4 3 C: 1 1 3 5 B: 3 C': 1 1 3 5 4. for j n downto 1 do B[C[A[ j]]] A[ j] C[A[ j]] C[A[ j]] – 1 9/18/2018
108
Analysis Q(k) Q(n) Q(k) Q(n) Q(n + k) 1. for i 1 to k do C[i] 0 2.
for j 1 to n do C[A[ j]] C[A[ j]] + 1 Q(n) 3. for i 2 to k do C[i] C[i] + C[i–1] Q(k) 4. for j n downto 1 do B[C[A[ j]]] A[ j] C[A[ j]] C[A[ j]] – 1 Q(n) Q(n + k) 9/18/2018
109
What other algorithms have this property?
Stable sorting Counting sort is a stable sort: it preserves the input order among equal elements. A: 4 1 3 B: Why this is important? What other algorithms have this property? 9/18/2018
110
Radix sort Similar to sorting the address books
Treat each digit as a key Start from the least significant bit Most significant Least significant 9/18/2018
111
Time complexity Sort each of the d digits by counting sort
Total cost: d (n + k) k = 10 Total cost: Θ(dn) Partition the d digits into groups of 3 Total cost: (n+103)d/3 We work with binaries rather than decimals Partition a binary number into groups of r bits Total cost: (n+2r)d/r Choose r = log n Total cost: dn / log n Compare with dn log n Catch: faster than quicksort only when n is very large 9/18/2018
112
Randomized selection algorithm
RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[ p . . q] if p = q & i > 1 then error! r RAND-PARTITION(A, p, q) k r – p + 1 ⊳ k = rank(A[r]) if i = k then return A[ r] if i < k then return RAND-SELECT( A, p, r – 1, i ) else return RAND-SELECT( A, r + 1, q, i – k ) £ A[r] ³ A[r] r p q k 9/18/2018
113
Select the 6 – 4 = 2nd smallest recursively.
Example Select the i = 6th smallest: 7 10 5 8 11 3 2 13 i = 6 pivot 3 2 5 7 11 8 10 13 Partition: k = 4 Select the 6 – 4 = 2nd smallest recursively. 9/18/2018
114
Complete example: select the 6th smallest element.
i = 6 7 10 5 8 11 3 2 13 3 2 5 7 11 8 10 13 k = 4 i = 6 – 4 = 2 k = 3 10 8 11 13 i = 2 < k Note: here we always used first element as pivot to do the partition (instead of rand-partition). k = 2 8 10 i = 2 = k 10 9/18/2018
115
Intuition for analysis
(All our analyses today assume that all elements are distinct.) Lucky: T(n) = T(9n/10) + Q(n) = Q(n) CASE 3 Unlucky: T(n) = T(n – 1) + Q(n) = Q(n2) arithmetic series Worse than sorting! 9/18/2018
116
Running time of randomized selection
T(max(0, n–1)) + n if 0 : n–1 split, T(max(1, n–2)) + n if 1 : n–2 split, M T(max(n–1, 0)) + n if n–1 : 0 split, T(n) ≤ For upper bound, assume ith element always falls in larger side of partition The expected running time is an average of all cases Expectation 9/18/2018
117
Worst-case linear-time selection
if i = k then return x elseif i < k then recursively SELECT the i th smallest element in the lower part else recursively SELECT the (i–k)th smallest element in the upper part SELECT(i, n) Divide the n elements into groups of 5. Find the median of each 5-element group by rote. Recursively SELECT the median x of the ën/5û group medians to be the pivot. Partition around the pivot x. Let k = rank(x). Same as RAND-SELECT 9/18/2018
118
Developing the recurrence
T(n) if i = k then return x elseif i < k then recursively SELECT the i th smallest element in the lower part else recursively SELECT the (i–k)th smallest element in the upper part SELECT(i, n) Divide the n elements into groups of 5. Find the median of each 5-element group by rote. Recursively SELECT the median x of the ën/5û group medians to be the pivot. Partition around the pivot x. Let k = rank(x). Q(n) T(n/5) Q(n) T(7n/10+3) 9/18/2018
119
Solving the recurrence
Assumption: T(k) £ ck for all k < n if n ≥ 60 if c ≥ 20 and n ≥ 60 9/18/2018
120
Elements of dynamic programming
Optimal sub-structures Optimal solutions to the original problem contains optimal solutions to sub-problems Overlapping sub-problems Some sub-problems appear in many solutions 9/18/2018
121
Two steps to dynamic programming
Formulate the solution as a recurrence relation of solutions to subproblems. Specify an order to solve the subproblems so you always have what you need. 9/18/2018
122
Optimal subpaths Claim: if a path startgoal is optimal, any sub-path, startx, or xgoal, or xy, where x, y is on the optimal path, is also the shortest. Proof by contradiction If the subpath between x and y is not the shortest, we can replace it with the shorter one, which will reduce the total length of the new path => the optimal path from start to goal is not the shortest => contradiction! Hence, the subpath xy must be the shortest among all paths from x to y start goal x y a b c b’ a + b + c is shortest b’ < b a + b’ + c < a + b + c 9/18/2018
123
Dynamic programming illustration
3 9 1 2 3 12 13 15 5 3 3 3 3 3 2 5 2 5 6 8 13 15 2 3 3 9 3 2 4 2 3 7 9 11 13 16 6 2 3 7 4 3 6 3 3 13 11 14 17 20 4 6 3 1 3 1 2 3 2 17 17 17 18 20 G F(i-1, j) + dist(i-1, j, i, j) F(i, j) = min F(i, j-1) + dist(i, j-1, i, j) 9/18/2018
124
Trace back 3 9 1 2 3 12 13 15 5 3 3 3 3 3 2 5 2 5 6 8 13 15 2 3 3 9 3 2 4 2 3 7 9 11 13 16 6 2 3 7 4 3 6 3 3 13 11 14 17 20 4 6 3 1 3 1 2 3 2 17 17 17 18 20 9/18/2018
125
Longest Common Subsequence
Given two sequences x[1 . . m] and y[1 . . n], find a longest subsequence common to them both. “a” not “the” x: A B C D y: BCBA = LCS(x, y) functional notation, but not a function 9/18/2018
126
Optimal substructure Notice that the LCS problem has optimal substructure: parts of the final solution are solutions of subproblems. If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y. Subproblems: “find LCS of pairs of prefixes of x and y” i m x z n y j 9/18/2018
127
Finding length of LCS m x n y Let c[i, j] be the length of LCS(x[1..i], y[1..j]) => c[m, n] is the length of LCS(x, y) If x[m] = y[n] c[m, n] = c[m-1, n-1] + 1 If x[m] != y[n] c[m, n] = max { c[m-1, n], c[m, n-1] } 9/18/2018
128
DP Algorithm c[i–1, j–1] + 1 if x[i] = y[j],
Key: find out the correct order to solve the sub-problems Total number of sub-problems: m * n c[i, j] = c[i–1, j–1] + 1 if x[i] = y[j], max{c[i–1, j], c[i, j–1]} otherwise. j n C(i, j) i m 9/18/2018
129
LCS Example (0) ABCB BDCAB X = ABCB; m = |X| = 4
j i Y[j] B D C A B X[i] A 1 B 2 3 C 4 B X = ABCB; m = |X| = 4 Y = BDCAB; n = |Y| = 5 Allocate array c[5,6] 9/18/2018
130
LCS Example (1) ABCB BDCAB for i = 1 to m c[i,0] = 0
j i Y[j] B D C A B X[i] A 1 B 2 3 C 4 B for i = 1 to m c[i,0] = 0 for j = 1 to n c[0,j] = 0 9/18/2018
131
LCS Example (2) ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1 B 2
A 1 B 2 3 C 4 B if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
132
LCS Example (3) ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1 B 2
A 1 B 2 3 C 4 B if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
133
LCS Example (4) ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1 1 B
A 1 1 B 2 3 C 4 B if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
134
LCS Example (5) ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1 1 1
A 1 1 1 B 2 3 C 4 B if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
135
LCS Example (6) ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1 1 1
A 1 1 1 B 2 1 3 C 4 B if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
136
LCS Example (7) ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1 1 1
A 1 1 1 B 2 1 1 1 1 3 C 4 B if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
137
LCS Example (8) ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1 1 1
A 1 1 1 B 2 1 1 1 1 2 3 C 4 B if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
138
LCS Example (14) 3 ABCB BDCAB j 0 1 2 3 4 5 i Y[j] B D C A B X[i] A 1
A 1 1 1 B 2 1 1 1 1 2 3 C 1 1 2 2 2 3 4 B 1 1 2 2 if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] ) 9/18/2018
139
LCS Algorithm Running Time
LCS algorithm calculates the values of each entry of the array c[m,n] So what is the running time? O(m*n) since each c[i,j] is calculated in constant time, and there are m*n elements in the array 9/18/2018
140
How to find actual LCS For example, here
The algorithm just found the length of LCS, but not LCS itself. How to find the actual LCS? For each c[i,j] we know how it was acquired: A match happens only when the first equation is taken So we can start from c[m,n] and go backwards, remember x[i] whenever c[i,j] = c[i-1, j-1]+1. 2 2 For example, here c[i,j] = c[i-1,j-1] +1 = 2+1=3 2 3 9/18/2018
141
Finding LCS 3 Time for trace back: O(m+n). j 0 1 2 3 4 5 i Y[j] B D C
X[i] A 1 1 1 B 2 1 1 1 1 2 3 C 1 1 2 2 2 3 4 B 1 1 2 2 Time for trace back: O(m+n). 9/18/2018
142
Finding LCS (2) 3 LCS (reversed order): B C B B C B
j i Y[j] B D C A B X[i] A 1 1 1 B 2 1 1 1 1 2 3 C 1 1 2 2 2 3 4 B 1 1 2 2 LCS (reversed order): B C B B C B (this string turned out to be a palindrome) LCS (straight order): 9/18/2018
143
LCS as a longest path problem
D C A B A 1 B 1 1 1 C B 1 1 9/18/2018
144
LCS as a longest path problem
D C A B A 1 1 1 1 1 B 1 1 1 1 2 1 C 1 1 2 2 2 B 1 1 1 1 1 2 3 9/18/2018
145
Restaurant location problem 1
You work in the fast food business Your company plans to open up new restaurants in Texas along I-35 Towns along the highway called t1, t2, …, tn Restaurants at ti has estimated annual profit pi No two restaurants can be located within 10 miles of each other due to some regulation Your boss wants to maximize the total profit You want a big bonus 10 mile 9/18/2018
146
A DP algorithm Suppose you’ve already found the optimal solution
It will either include tn or not include tn Case 1: tn not included in optimal solution Best solution same as best solution for t1 , …, tn-1 Case 2: tn included in optimal solution Best solution is pn + best solution for t1 , …, tj , where j < n is the largest index so that dist(tj, tn) ≥ 10 9/18/2018
147
Recurrence formulation
Let S(i) be the total profit of the optimal solution when the first i towns are considered (not necessarily selected) S(n) is the optimal solution to the complete problem S(n-1) S(j) + pn j < n & dist (tj, tn) ≥ 10 S(n) = max S(i-1) S(j) + pi j < i & dist (tj, ti) ≥ 10 S(i) = max Generalize Number of sub-problems: n. Boundary condition: S(0) = 0. Dependency: i i-1 j S 9/18/2018
148
Example S(i-1) S(j) + pi j < i & dist (tj, ti) ≥ 10 S(i) = max
Distance (mi) 100 5 2 2 6 6 3 6 10 7 dummy 7 3 4 12 Profit (100k) 6 7 9 8 3 3 2 4 12 5 S(i) 6 7 9 9 10 12 12 14 26 26 Optimal: 26 S(i-1) S(j) + pi j < i & dist (tj, ti) ≥ 10 S(i) = max Natural greedy 1: = 25 Natural greedy 2: = 24 9/18/2018
149
Complexity Time: (nk), where k is the maximum number of towns that are within 10 miles to the left of any town In the worst case, (n2) Can be improved to (n) with some preprocessing tricks Memory: Θ(n) 9/18/2018
150
Knapsack problem Each item has a value and a weight
Objective: maximize value Constraint: knapsack has a weight limitation Three versions: 0-1 knapsack problem: take each item or leave it Fractional knapsack problem: items are divisible Unbounded knapsack problem: unlimited supplies of each item. Which one is easiest to solve? We study the 0-1 problem today. 9/18/2018
151
Formal definition (0-1 problem)
Knapsack has weight limit W Items labeled 1, 2, …, n (arbitrarily) Items have weights w1, w2, …, wn Assume all weights are integers For practical reason, only consider wi < W Items have values v1, v2, …, vn Objective: find a subset of items, S, such that iS wi W and iS vi is maximal among all such (feasible) subsets 9/18/2018
152
A DP algorithm Suppose you’ve find the optimal solution S
Case 1: item n is included Case 2: item n is not included Total weight limit: W Total weight limit: W wn wn Find an optimal solution using items 1, 2, …, n-1 with weight limit W - wn Find an optimal solution using items 1, 2, …, n-1 with weight limit W 9/18/2018
153
Recursive formulation
Let V[i, w] be the optimal total value when items 1, 2, …, i are considered for a knapsack with weight limit w => V[n, W] is the optimal solution V[n, W] = max V[n-1, W-wn] + vn V[n-1, W] Generalize V[i, w] = max V[i-1, w-wi] + vi item i is taken V[i-1, w] item i not taken V[i-1, w] if wi > w item i not taken Boundary condition: V[i, 0] = 0, V[0, w] = 0. Number of sub-problems = ? 9/18/2018
154
Example n = 6 (# of items) W = 10 (weight limit)
Items (weight, value): 9/18/2018
155
w 1 2 3 4 5 6 7 8 9 10 i wi vi 1 2 2 2 4 3 wi 3 3 3 V[i-1, w-wi] V[i-1, w] 4 5 5 6 6 V[i, w] 5 2 4 6 6 9 V[i-1, w-wi] + vi item i is taken V[i-1, w] item i not taken max V[i, w] = V[i-1, w] if wi > w item i not taken 9/18/2018
156
w 1 2 3 4 5 6 7 8 9 10 i wi vi 1 2 4 3 5 6 9 2 2 2 2 2 2 2 2 2 3 5 2 2 3 5 5 5 5 6 8 3 5 2 3 5 6 8 6 8 9 11 2 3 3 6 9 4 6 7 10 12 13 4 7 10 13 15 9 4 4 6 7 10 13 V[i-1, w-wi] + vi item i is taken V[i-1, w] item i not taken max V[i-1, w] if wi > w item i not taken V[i, w] = 9/18/2018
157
w 1 2 3 4 5 6 7 8 9 10 i wi vi 1 2 4 3 5 6 9 2 2 2 2 2 2 2 2 2 3 5 2 2 3 5 5 5 5 6 8 3 5 2 3 5 6 8 6 8 9 11 2 3 3 6 9 4 7 10 12 13 4 6 7 10 13 9 4 4 6 7 10 13 15 Optimal value: 15 Item: 6, 5, 1 Weight: = 10 Value: = 15 9/18/2018
158
Time complexity Θ (nW) Polynomial?
Pseudo-polynomial Works well if W is small Consider following items (weight, value): (10, 5), (15, 6), (20, 5), (18, 6) Weight limit 35 Optimal solution: item 2, 4 (value = 12). Iterate: 2^4 = 16 subsets Dynamic programming: fill up a 4 x 35 = 140 table entries What’s the problem? Many entries are unused: no such weight combination Top-down may be better 9/18/2018
159
Longest increasing subsequence
Given a sequence of numbers Find a longest subsequence that is non-decreasing E.g It has to be a subsequence of the original list It has to in sorted order => It is a subsequence of the sorted list Original list: LCS: Sorted: 9/18/2018
160
Events scheduling problem
Time A list of events to schedule (or shows to see) ei has start time si and finishing time fi Indexed such that fi < fj if i < j Each event has a value vi Schedule to make the largest value You can attend only one event at any time Very similar to the new restaurant location problem Sort events according to their finish time Consider: if the last event is included or not 9/18/2018
161
Events scheduling problem
f9 s8 f8 s7 f7 e8 e3 e4 e5 e7 e9 e1 e2 Time V(i) is the optimal value that can be achieved when the first i events are considered V(n) = V(n-1) en not selected max { V(j) + vn en selected j < n and fj < sn 9/18/2018
162
Coin change problem Given some denomination of coins (e.g., 2, 5, 7, 10), decide if it is possible to make change for a value (e.g, 13), or minimize the number of coins Version 1: Unlimited number of coins for each denomination Unbounded knapsack problem Version 2: Use each denomination at most once 0-1 Knapsack problem 9/18/2018
163
Use DP algorithm to solve new problems
Directly map a new problem to a known problem Modify an algorithm for a similar task Design your own Think about the problem recursively Optimal solution to a larger problem can be computed from the optimal solution of one or more subproblems These sub-problems can be solved in certain manageable order Works nicely for naturally ordered data such as strings, trees, some special graphs Trickier for general graphs The text book has some very good exercises. 9/18/2018
164
Unit-profit restaurant location problem
Now the objective is to maximize the number of new restaurants (subject to the distance constraint) In other words, we assume that each restaurant makes the same profit, no matter where it is opened 10 mile 9/18/2018
165
A DP Algorithm Exactly as before, but pi = 1 for all i S(i-1)
S(j) + pi j < i & dist (tj, ti) ≥ 10 S(i) = max S(i-1) S(j) + 1 j < i & dist (tj, ti) ≥ 10 S(i) = max 9/18/2018
166
Greedy algorithm for restaurant location problem
select t1 d = 0; for (i = 2 to n) d = d + dist(ti, ti-1); if (d >= min_dist) select ti end 5 2 2 6 6 3 6 10 7 d 5 7 9 15 6 9 15 10 7 9/18/2018
167
Complexity Time: Θ(n) Memory: Θ(n) to store the input
Θ(1) for greedy selection 9/18/2018
168
Optimal substructure Claim 1: if A = [m1, m2, …, mk] is the optimal solution to the restaurant location problem for a set of towns [t1, …, tn] m1 < m2 < … < mk are indices of the selected towns Then B = [m2, m3, …, mk] is the optimal solution to the sub-problem [tj, …, tn], where tj is the first town that are at least 10 miles to the right of tm1 Proof by contradiction: suppose B is not the optimal solution to the sub-problem, which means there is a better solution B’ to the sub-problem A’ = mi || B’ gives a better solution than A = mi || B => A is not optimal => contradiction => B is optimal B m1 A m2 mk m1 B’ (imaginary) A’ 9/18/2018
169
Greedy choice property
Claim 2: for the uniform-profit restaurant location problem, there is an optimal solution that chooses t1 Proof by contradiction: suppose that no optimal solution can be obtained by choosing t1 Say the first town chosen by the optimal solution S is ti, i > 1 Replace ti with t1 will not violate the distance constraint, and the total profit remains the same => S’ is an optimal solution Contradiction Therefore claim 2 is valid S S’ 9/18/2018
170
Fractional knapsack problem
Each item has a value and a weight Objective: maximize value Constraint: knapsack has a weight limitation 0-1 knapsack problem: take each item or leave it Fractional knapsack problem: items are divisible Unbounded knapsack problem: unlimited supplies of each item. Which one is easiest to solve? We can solve the fractional knapsack problem using greedy algorithm 9/18/2018
171
Greedy algorithm for fractional knapsack problem
Compute value/weight ratio for each item Sort items by their value/weight ratio into decreasing order Call the remaining item with the highest ratio the most valuable item (MVI) Iteratively: If the weight limit can not be reached by adding MVI Select MVI Otherwise select MVI partially until weight limit 9/18/2018
172
Example Weight limit: 10 9 6 4 2 5 3 1 Value ($) Weight (LB) item 1.5
1.2 1 0.75 $ / LB 9/18/2018
173
Example Weight limit: 10 Take item 5 Take item 6 Take 2 LB of item 4
Weight (LB) Value ($) $ / LB 5 2 4 6 9 1.5 1.2 1 3 0.75 9/18/2018
174
Why is greedy algorithm for fractional knapsack problem valid?
Claim: the optimal solution must contain the MVI as much as possible (either up to the weight limit or until MVI is exhausted) Proof by contradiction: suppose that the optimal solution does not use all available MVI (i.e., there is still w (w < W) pounds of MVI left while we choose other items) We can replace w pounds of less valuable items by MVI The total weight is the same, but with value higher than the “optimal” Contradiction w w 9/18/2018
175
Graphs 1 2 4 3 A graph G = (V, E) V = set of vertices
E = set of edges = subset of V V Thus |E| = O(|V|2) 1 Vertices: {1, 2, 3, 4} Edges: {(1, 2), (2, 3), (1, 3), (4, 3)} 2 4 3 9/18/2018
176
Graphs: Adjacency Matrix
Example: A 1 2 3 4 1 2 4 3 How much storage does the adjacency matrix require? A: O(V2) 9/18/2018
177
Graphs: Adjacency List
Adjacency list: for each vertex v V, store a list of vertices adjacent to v Example: Adj[1] = {2,3} Adj[2] = {3} Adj[3] = {} Adj[4] = {3} Variation: can also keep a list of edges coming into vertex 1 2 4 3 9/18/2018
178
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
179
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
180
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
181
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
182
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
183
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
184
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
185
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
186
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
187
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
188
Kruskal’s algorithm: example
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
189
Time complexity Depending on implementation Pseudocode:
sort all edges according to weights T = {}. tree(v) = v for all v. for each edge (u, v) if tree(u) != tree(v) T = T U (u, v); union (tree(u), tree(v)) Θ(m log m) = Θ(m log n) m edges Avg time spent per edge Naïve: Θ (n) Better: Θ (log n) using set union Overall time complexity Naïve: Θ(nm) Better implementation: Θ(m log n) 9/18/2018
190
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ ∞ 9/18/2018
191
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ChangeKey c b a d e f g h 0 ∞ 9/18/2018
192
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExctractMin h b a d e f g ∞ 9/18/2018
193
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ChangeKey d b a h e f g 3 14 ∞ 9/18/2018
194
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExctractMin b g a h e f 14 ∞ 9/18/2018
195
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d Changekey b e a h g f 8 10 ∞ 9/18/2018
196
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin e f a h g 10 ∞ 9/18/2018
197
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d Changekey f e a h g 5 10 6 ∞ 9/18/2018
198
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin a e g h 6 10 ∞ 9/18/2018
199
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d Changekey a e g h 6 7 9 ∞ 9/18/2018
200
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin e h g 7 ∞ 9 9/18/2018
201
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin g h 9 ∞ 9/18/2018
202
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d Changekey g h 9 15 9/18/2018
203
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin h 15 9/18/2018
204
Prim’s algorithm: example
6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 9/18/2018
205
Complete Prim’s Algorithm
MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; T = {}; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) T = T U (u, v); ChangeKey(v, w(u,v)); Overall running time: Θ(m log n) Cost per ChangeKey n vertices Θ(n) times Θ(n2) times? Θ(m) times How often is ExtractMin() called? How often is ChangeKey() called? 9/18/2018
206
Summary Kruskal’s algorithm Prim’s algorithm Θ(m log n)
Possibly Θ(m + n log n) with counting sort Prim’s algorithm With priority queue : Θ(m log n) Assume graph represented by adj list With distance array : Θ(n^2) Adj list or adj matrix For sparse graphs priority queue wins For dense graphs distance array may be better 9/18/2018
207
b h f e d a i c g a b c d e f g h i ∞ 14 7 5 Dijkstra’s algorithm 9 14
6 9 1 5 3 5 e 6 d 8 a i 4 7 2 1 c 7 g a b c d e f g h i ∞ 14 7 5 Dijkstra’s algorithm 9/18/2018
208
b h f e d a i c g a b c d e f g h i 11 7 5 ∞ Dijkstra’s algorithm 9 14
6 9 1 5 3 5 e 6 d 8 a i 4 7 11 2 1 c 7 g a b c d e f g h i 11 7 5 ∞ Dijkstra’s algorithm 9/18/2018
209
b h f e d a i c g a b c d e f g h i 9 11 7 5 ∞ Dijkstra’s algorithm 9
14 11 b 9 14 h 7 f 7 6 9 1 5 3 5 e 6 d 8 a i 4 11 7 2 1 9 c 7 g a b c d e f g h i 9 11 7 5 ∞ Dijkstra’s algorithm 9/18/2018
210
14 11 b 9 14 h 12 7 f 7 6 9 1 5 3 5 e 6 d 8 a i 17 4 11 7 2 1 9 c 7 g a b c d e f g h i 9 11 7 5 12 ∞ 17 Dijkstra’s algorithm 9/18/2018
211
14 11 b 9 20 14 h 12 7 f 7 6 9 1 5 3 5 e 6 d 8 a i 17 4 11 7 2 1 9 c 7 g a b c d e f g h i 9 11 7 5 12 ∞ 20 17 Dijkstra’s algorithm 9/18/2018
212
14 11 b 9 20 14 h 12 19 7 f 7 6 9 1 5 3 5 e 6 d 8 a i 17 4 11 7 2 1 9 c 7 g a b c d e f g h i 9 11 7 5 12 ∞ 19 17 Dijkstra’s algorithm 9/18/2018
213
14 11 b 9 20 14 h 12 19 7 f 7 6 18 9 1 5 3 5 e 6 d 8 a i 17 4 11 7 2 1 9 c 7 g 18 a b c d e f g h i 9 11 7 5 12 18 17 Dijkstra’s algorithm 9/18/2018
214
14 11 b 9 20 14 h 12 19 7 f 7 6 18 9 1 5 3 5 e 6 d 8 a i 17 4 11 7 2 1 9 c 7 g 18 a b c d e f g h i 9 11 7 5 12 18 17 Dijkstra’s algorithm 9/18/2018
215
14 11 b 9 20 14 h 12 19 7 f 7 6 18 9 1 5 3 5 e 6 d 8 a i 17 4 11 7 2 1 9 c 7 g 18 a b c d e f g h i 9 11 7 5 12 18 17 Dijkstra’s algorithm 9/18/2018
216
Prim’s Algorithm Overall running time: Θ(m log n) MST-Prim(G, w, r)
Q = V[G]; for each u Q key[u] = ; key[r] = 0; T = {}; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) T = T U (u, v); ChangeKey(v, w(u,v)); Overall running time: Θ(m log n) Cost per ChangeKey 9/18/2018
217
Running time of Dijkstra’s algorithm is the same as Prim’s algorithm
Dijkstra(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; T = {}; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and key[u]+w(u,v) < key[v]) T = T U (u, v); ChangeKey(v, key[u]+w(u,v)); Overall running time: Θ(m log n) Cost per ChangeKey Running time of Dijkstra’s algorithm is the same as Prim’s algorithm 9/18/2018
218
Breadth-First Search What does v.d represent? What does v.p represent?
BFS(G, s) { initialize vertices; // mark all vertices as white Q = {s}; // Q is a queue; initialize to s while (Q not empty) { u = Dequeue(Q); for each v adj[u] if (v.color == WHITE) { v.color = GREY; v.d = u.d + 1; v.p = u; Enqueue(Q, v); } u.color = BLACK; What does v.d represent? What does v.p represent?
219
Depth-First Search: The Code
DFS(G) { for each vertex u G->V u->color = WHITE; } time = 0; if (u->color == WHITE) DFS_Visit(u); DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v u->Adj[] if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; u->f = time;
220
Correctness of Topological Sort
Claim: (u,v) G uf > vf When (u,v) is explored, u is grey v = grey (u,v) is back edge. Contradiction (Why?) v = white v becomes descendent of u vf < uf (since must finish v before backtracking and finishing u) v = black v already finished vf < uf
221
Another Algorithm Store vertices in a priority min-queue, with the in-degree of the vertex as the key While queue is not empty Extract minimum vertex v, and give it next number Decrease keys of all adjacent vertices by 1 1 2 2 1 4 7 8 1 3 5 6 1 1 9 2 3
222
Another Algorithm Store vertices in a priority min-queue, with the in-degree of the vertex as the key While queue is not empty Extract minimum vertex v, and give it next number Decrease keys of all adjacent vertices by 1 1 1 2 2 1 4 7 8 1 1 3 5 6 1 1 9 2 1 3 2
223
Good luck with your final!
9/18/2018
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.