Download presentation
Presentation is loading. Please wait.
1
CS 3343: Analysis of Algorithms
Lecture 22: Minimum Spanning Tree
2
Outline Review of last lecture
Prim’s algorithm and Kruskal’s algorithm for MST in detail
3
Graph Review G = (V, E) Types of graphs V: a set of vertices
E: a set of edges Degree: number of edges In-degree vs out-degree Types of graphs Directed / undirected Weighted / un-weighted Dense / sparse Connected / disconnected
4
Graph representations
Adjacency matrix A 1 2 3 4 1 2 4 3 How much storage does the adjacency matrix require? A: O(V2)
5
Graph representations
Adjacency list 1 2 3 3 2 4 3 3 How much storage does the adjacency list require? A: O(V+E)
6
Graph representations
Undirected graph 4 3 2 1 A 1 2 4 3 2 3 1 3 1 2 4 3
7
Graph representations
Weighted graph 4 3 2 9 6 5 1 A 1 5 2 6 4 9 4 3 2,5 3,6 1,5 3,9 1,6 2,9 4,4 3,4
8
Analysis of time complexity
Convention: Number of vertices: n, |V|, V Number of edges: m, |E|, E O(V+E) is the same as O(n+m) or O(|V|+|E|)
9
Tradeoffs between the two representations
|V| = n, |E| = m Adj Matrix Adj List test (u, v) E Θ(1) O(n) Degree(u) Θ(n) Memory Θ(n2) Θ(n+m) Edge insertion Edge deletion Graph traversal Both representations are very useful and have different properties, although adjacency lists are probably better for most problems
10
Minimum Spanning Tree Problem: given a connected, undirected, weighted graph: 14 10 3 6 4 5 2 9 15 8
11
Minimum Spanning Tree Problem: given a connected, undirected, weighted graph, find a spanning tree using edges that minimize the total weight 6 4 5 9 A spanning tree is a tree that connects all vertices Number of edges = ? A spanning tree has no designated root. 14 2 10 15 3 8
12
Minimum Spanning Tree MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees Let T be an MST of G with an edge (u,v) in the middle Removing (u,v) partitions T into two trees T1 and T2 w(T) = w(u,v) + w(T1) + w(T2) Claim 1: T1 is an MST of G1 = (V1, E1), and T2 is an MST of G2 = (V2, E2) Proof by contradiction: if T1 is not optimal, we can replace T1 with a better spanning tree, T1’ T1’, T2 and (u, v) form a new spanning tree T’ W(T’) < W(T). Contradiction. T1 T2 u v T1’
13
Minimum Spanning Tree MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees Let T be an MST of G with an edge (u,v) in the middle Removing (u,v) partitions T into two trees T1 and T2 w(T) = w(u,v) + w(T1) + w(T2) Claim 2: (u, v) is the lightest edge connecting G1 = (V1, E1) and G2 = (V2, E2) Proof by contradiction: if (u, v) is not the lightest edge, we can remove it, and reconnect T1 and T2 with a lighter edge (x, y) T1, T2 and (x, y) form a new spanning tree T’ W(T’) < W(T). Contradiction. T1 T2 x y u v
14
Algorithms Generic idea: Two of the most well-known algorithms
Compute MSTs for sub-graphs Connect two MSTs for sub-graphs with the lightest edge Two of the most well-known algorithms Prim’s algorithm Kruskal’s algorithm Let’s first talk about the ideas behind the algorithms without worrying about the implementation and analysis
15
Prim’s algorithm Basic idea: Start from an arbitrary single node
A MST for a single node has no edge Gradually build up a single larger and larger MST 6 5 Not yet discovered 7 Fully explored nodes Discovered but not fully explored nodes
16
Prim’s algorithm Basic idea: Start from an arbitrary single node
A MST for a single node has no edge Gradually build up a single larger and larger MST 6 2 5 9 Not yet discovered 4 7 Fully explored nodes Discovered but not fully explored nodes
17
Prim’s algorithm Basic idea: Start from an arbitrary single node
A MST for a single node has no edge Gradually build up a single larger and larger MST 2 6 5 9 4 7
18
Prim’s algorithm in words
Randomly pick a vertex as the initial tree T Gradually expand into a MST: For each vertex that is not in T but directly connected to some nodes in T Compute its minimum distance to any vertex in T Select the vertex that is closest to T Add it to T
19
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
20
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
21
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
22
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
23
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
24
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
25
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
26
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
27
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
28
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
29
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
30
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
31
Pseudocode for Prim’s algorithm
Given G = (V, E). Output: a MST T. Randomly select a vertex v S = {v}; A = V \ S; T = {}. While (A is not empty) find a vertex u A that connects to vertex v S such that w(u, v) ≤ w(x, y), for any x A and y S S = S U {u}; A = A \ {u}; T = T U (u, v). End Return T
32
Time complexity Given G = (V, E). Output: a MST T.
Randomly select a vertex v S = {v}; A = V \ S; T = {}. While (A is not empty) find a vertex u A that connects to vertex v S such that w(u, v) ≤ w(x, y), for any x A and y S S = S U {u}; A = A \ {u}; T = T U (u, v). End Return T n vertices Time complexity: n * (time spent on purple line per vertex) Naïve: test all edges => Θ(n * m) Improve: keep the list of candidates in an array => Θ(n2) Better: with priority queue => Θ(m log n)
33
Idea 1: naive find a vertex u A that connects to vertex v S such that w(u, v) ≤ w(x, y), for any x A and y S min_weight = infinity. For each edge (x, y) E if x A, y S, and w(x, y) < min_weight u = x; v = y; min_weight = w(x, y); time spent per vertex: Θ(m) Total time complexity: Θ(n*m)
34
Idea 2: distance array For each v V d[v] = infinity; p[v] = null;
// For each vertex v, d[v] is the min distance from v to any node already in S // p[v] is the parent node of v in the spanning tree For each v V d[v] = infinity; p[v] = null; Randomly select a v, d[v] = 1; // d[v]=1 just to ensure proper start S = {}; A = V; T = {}. While (A is not empty) Search d to find the smallest d[u] > 0. S = S U {u}; A = A \ {u}; T = T U (u, p[u]); d[u] = 0. For each v in adj[u] if d[v] > w(u, v) d[v] = w(u, v); p[v] = u; End
35
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ ∞ 1 p / /
36
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ ∞ p / /
37
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ 14 3 ∞ p /
Discovered 14 7 15 8 c e h 3 10 Explored d Not discovered a b c d e f g h ∞ 14 3 ∞ p / /
38
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ 14 ∞ p / /
39
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ 8 10 ∞ p /
10 ∞ p / /
40
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ 10 ∞ p / /
41
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 6 10 5 ∞ p b
10 5 ∞ p b /
42
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 6 10 ∞ p b /
43
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 6 7 9 ∞ p b
7 9 ∞ p b /
44
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 0 7 9 ∞ p b
7 9 ∞ p b /
45
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 0 9 ∞ p b /
46
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 0 9 15 p b /
47
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 0 15 p b /
48
a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h 0 p b /
49
Time complexity? n vertices Θ(n) per vertex Overall complexity: Θ (n2)
// For each vertex v, d[v] is the min distance from v to any node already in S // p[v] is the parent node of v in the spanning tree For each v V d[v] = infinity; p[v] = null; Randomly select a v, d[v] = 1; // d[v]=1 just to ensure proper start S = {}. T = {}. A = V. While (A is not empty) Search d to find the smallest d[u] > 0. S = S U {u}; A = A \ {u}; T = T U (u, p[u]); d[u] = 0. For each v in adj[u] if d[v] > w(u, v) d[v] = w(u, v); p[v] = u; End n vertices Θ(n) per vertex O(n) per vertex if using adj list (n) per vertex if using adj matrix Overall complexity: Θ (n2)
50
Idea 3: priority queue (min-heap)
Observation In idea 2, we need to search the distance array n times, each time we only look for the minimum element. Distance array size = n n x n = n2 Can we do better? Priority queue (heap) enables fast retrieval of min (or max) elements log (n) for most operations
51
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h ∞ ∞
52
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ∞ c b a d e f g h 0
ChangeKey c b a d e f g h 0 ∞
53
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ∞ h b a d e f g
ExctractMin h b a d e f g ∞
54
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 3 14 ∞ d b a h e f g
ChangeKey d b a h e f g 3 14 ∞
55
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ∞ b g a h e f 14
ExctractMin b g a h e f 14 ∞
56
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 10 ∞ b e a h g f 8
Changekey b e a h g f 8 10 ∞
57
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 10 ∞ e f a h g
ExtractMin e f a h g 10 ∞
58
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 5 10 6 ∞ f e a h g
Changekey f e a h g 5 10 6 ∞
59
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 6 10 ∞ a e g h
ExtractMin a e g h 6 10 ∞
60
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d 6 7 9 ∞ a e g h
Changekey a e g h 6 7 9 ∞
61
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin e h g 7 ∞ 9
62
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin g h 9 ∞
63
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d Changekey g h 9 15
64
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d ExtractMin h 15
65
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
66
Complete Prim’s Algorithm
MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; p[u] = null; key[r] = 0; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; ChangeKey(v, w(u,v)); Overall running time: Θ(m log n) Cost per ChangeKey n vertices Θ(n) times Θ(n2) times? Θ(m) times (with adj list) How often is ExtractMin() called? How often is ChangeKey() called?
67
Kruskal’s algorithm in words
Procedure: Sort all edges into non-decreasing order Initially each node is in its own tree For each edge in the sorted list If the edge connects two separate trees, then join the two trees together with that edge
68
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
69
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
70
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
71
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
72
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
73
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
74
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
75
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
76
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
77
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
78
Example a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d c-d: 3 b-f: 5 b-a: 6
f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d
79
Time complexity Depend on implementation Pseudocode
sort all edges according to weights T = {}. tree(v) = v for all v. for each edge (u, v) if tree(u) != tree(v) T = T U (u, v); union (tree(u), tree(v)) Θ(m log m) = Θ(m log n) m edges m times (n-1) times. Overall time complexity: m log n + m t + n u Naïve: Θ(nm) Better implementation: Θ(m log n) tree union tree finding
80
Disjoint Set Union Use a linked list to represent tree elements, with pointers back to root: tree[u] != tree[v]: O(1) Union(tree[u],tree[v]): “Copy” elements of A into set B by adjusting elements of A to point to B Each union may take O(n) time Precisely n-1 unions O(n2)?
81
Disjoint Set Union Better strategy and analysis
Always copy smaller list into larger list Size of combined list is at least twice the size of smaller list Each vertex copied at most logn times before a single tree emerges Total number of copy operations for n vertex is therefore O(n log n) Overall time complexity: m log n + m t + n u t: time for finding tree root is constant u: time for n union operations is at most nlog (n) m log n + m t + n u = Θ (m log n + m + n log n) = Θ (m log n) Conclusion Kruskal’s algorithm runs in Θ(m log n) for both dense and sparse graph
82
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h
83
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b c d e f g h
84
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d a b f c d e g h
85
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b f a c d e g h
86
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b f e a c d g h
87
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b c d f e a g h
88
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b c d f g e a h
89
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b c d f g e a h
90
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b c d f g e a h
91
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b c d f g e a h
92
Example with disjoint set union
c-d: 3 b-f: 5 b-a: 6 f-e: 7 b-d: 8 f-g: 9 d-e: 10 a-f: 12 b-c: 14 e-h: 15 a 6 12 5 9 b f g 14 7 15 8 c e h 3 10 d b c d f g e h a
93
Disjoint Set Union Better strategy and analysis
Always copy smaller list into larger list Size of combined list is at least twice the size of smaller list Each vertex copied at most logn times before a single tree emerges Total number of copy operations for n vertex is therefore O(n log n) Overall time complexity: m log n + m t + n u t: time for finding tree root is constant u: time for n union operations is at most nlog (n) m log n + m t + n u = Θ (m log n + m + n log n) = Θ (m log n) Conclusion Kruskal’s algorithm runs in Θ(m log n) for both dense and sparse graph How about using counting sort? Θ(m + n log n)
94
Summary Kruskal’s algorithm Prim’s algorithm Θ(m log n)
Possibly Θ(m + n log n) with counting sort Prim’s algorithm With priority queue : Θ(m log n) Assume graph represented by adj list With distance array : Θ(n^2) Adj list or adj matrix For sparse graphs priority queue wins For dense graphs distance array may be better
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.