Download presentation
Presentation is loading. Please wait.
1
CSC 413/513: Intro to Algorithms
Topological Sort Minimum Spanning Trees
2
Review: DFS Code DFS(G) { for each vertex u G->V
u->color = WHITE; } time = 0; if (u->color == WHITE) DFS_Visit(u); DFS_Visit(u) { u->color = YELLOW; time = time+1; u->d = time; for each v u->Adj[] if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; u->f = time;
3
Review: DFS Example source vertex
4
Review: DFS Example source vertex d f 1 | | | | | | | |
5
Review: DFS Example source vertex d f 1 | | | 2 | | | | |
6
Review: DFS Example source vertex d f 1 | | | 2 | | 3 | | |
7
Review: DFS Example source vertex d f 1 | | | 2 | | 3 | 4 | |
8
Review: DFS Example source vertex d f 1 | | | 2 | | 3 | 4 5 | |
9
Review: DFS Example source vertex d f 1 | | | 2 | | 3 | 4 5 | 6 |
10
Review: DFS Example source vertex d f 1 | 8 | | 2 | 7 | 3 | 4 5 | 6 |
11
Review: DFS Example source vertex d f 1 | 8 | | 2 | 7 | 3 | 4 5 | 6 |
12
Review: DFS Example d f 1 | 8 | | 2 | 7 9 | 3 | 4 5 | 6 |
source vertex d f 1 | 8 | | 2 | 7 9 | 3 | 4 5 | 6 |
13
Review: DFS Example d f 1 | 8 | | 2 | 7 9 |10 3 | 4 5 | 6 |
source vertex d f 1 | 8 | | 2 | 7 9 |10 3 | 4 5 | 6 |
14
Review: DFS Example d f 1 | 8 |11 | 2 | 7 9 |10 3 | 4 5 | 6 |
source vertex d f 1 | 8 |11 | 2 | 7 9 |10 3 | 4 5 | 6 |
15
Review: DFS Example d f 1 |12 8 |11 | 2 | 7 9 |10 3 | 4 5 | 6 |
source vertex d f 1 |12 8 |11 | 2 | 7 9 |10 3 | 4 5 | 6 |
16
Review: DFS Example d f 1 |12 8 |11 13| 2 | 7 9 |10 3 | 4 5 | 6 |
source vertex d f 1 |12 8 |11 13| 2 | 7 9 |10 3 | 4 5 | 6 |
17
Review: DFS Example d f 1 |12 8 |11 13| 2 | 7 9 |10 3 | 4 5 | 6 14|
source vertex d f 1 |12 8 |11 13| 2 | 7 9 |10 3 | 4 5 | 6 14|
18
Review: DFS Example d f 1 |12 8 |11 13| 2 | 7 9 |10 3 | 4 5 | 6 14|15
source vertex d f 1 |12 8 |11 13| 2 | 7 9 |10 3 | 4 5 | 6 14|15
19
Review: DFS Example d f 1 |12 8 |11 13|16 2 | 7 9 |10 3 | 4 5 | 6
source vertex d f 1 |12 8 |11 13|16 2 | 7 9 |10 3 | 4 5 | 6 14|15
20
Review: Kinds Of Edges Thm: If G is undirected, a DFS produces only tree and back edges Thm: An undirected graph is acyclic iff a DFS yields no back edges Thus, can run DFS to find cycles
21
Review: Kinds of Edges d f 1 |12 8 |11 13|16 2 | 7 9 |10 3 | 4 5 | 6
source vertex d f 1 |12 8 |11 13|16 2 | 7 9 |10 3 | 4 5 | 6 14|15 Tree edges Back edges Forward edges Cross edges
22
DFS And Cycles Running time: O(V+E)
We can actually determine if cycles exist in O(V) time: In an undirected acyclic forest, |E| |V| - 1 So count the edges: if ever see |V| distinct edges, must have seen a back edge along the way Why not just test if |E| <|V| and answer the question in constant time?
23
Directed Acyclic Graphs
A directed acyclic graph or DAG is a directed graph with no directed cycles:
24
DFS and DAGs Argue that a directed graph G is acyclic iff a DFS of G yields no back edges: Forward: if G is acyclic, will be no back edges Trivial: a back edge implies a cycle Backward: if no back edges, G is acyclic Argue contrapositive: G has a cycle a back edge Let v be the vertex on the cycle first discovered, and u be the predecessor of v on the cycle When v discovered, whole cycle is white Must visit everything reachable from v before returning from DFS-Visit(v) So path from uv is yellowyellow, thus (u, v) is a back edge
25
Topological Sort Topological sort of a DAG:
Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge (u, v) G Real-world example: getting dressed
26
Getting Dressed Underwear Socks Watch Pants Shoes Shirt Belt Tie
Jacket
28
Topological Sort Algorithm
{ Run DFS When a vertex is finished, output it Vertices are output in reverse topological order } Time: O(V+E) Correctness: Want to prove that (u,v) G uf > vf
29
Correctness of Topological Sort
Claim: (u,v) G uf > vf When (u,v) is explored, u is yellow v = yellow (u,v) is back edge. Contradiction (Why?) v = white v becomes descendent of u vf < uf (since must finish v before backtracking and finishing u) v = black v already finished vf < uf
30
Minimum Spanning Tree Problem: given a connected, undirected, weighted graph: 6 4 5 9 14 2 10 15 3 8
31
Minimum Spanning Tree Problem: given a connected, undirected, weighted graph, find a spanning tree using edges that minimize the total weight 6 4 5 9 14 2 10 15 3 8
32
Minimum Spanning Tree Which edges form the minimum spanning tree (MST) of the graph below? A 6 4 5 9 H B C 14 2 10 15 G E D 3 8 F
33
Minimum Spanning Tree Answer: A 6 4 5 9 H B C 14 2 10 15 G E D 3 8 F
34
Minimum Spanning Tree MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees Let T be an MST of G with an edge (u,v) in the middle Removing (u,v) partitions T into two trees T1 and T2 Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of G2 = (V2,E2) (Do V1 and V2 share vertices? Why?) Proof: w(T) = w(u,v) + w(T1) + w(T2) (There can’t be a better tree than T1 or T2, or T would be suboptimal)
35
Minimum Spanning Tree Thm:
Let T be MST of G, and let A T be subtree of T Let (u,v) be min-weight edge connecting A to V-A Then (u,v) T
36
Minimum Spanning Tree Thm: Proof: in book (see Thm 23.1)
Let T be MST of G, and let A T be subtree of T Let (u,v) be min-weight edge connecting A to V-A Then (u,v) T Proof: in book (see Thm 23.1) Greedy choice property
37
Greedy Choice Property
V-A A A 6 4 5 9 H B C 14 2 10 15 G E D 3 8 F
38
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v);
39
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 2 10 15 3 8 Run on example graph
40
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 2 10 15 3 8 Run on example graph
41
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 2 10 15 r 3 8 Pick a start vertex r
42
Red vertices have been removed from Q
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 2 10 15 u 3 8 Red vertices have been removed from Q
43
Red arrows indicate parent pointers
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 2 10 15 u 3 8 3 Red arrows indicate parent pointers
44
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 14 2 10 15 u 3 8 3
45
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 14 2 10 15 3 8 3 u
46
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 14 14 2 10 15 8 3 8 3 u
47
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 10 14 2 10 15 8 3 8 3 u
48
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 10 14 2 10 15 8 3 8 3 u
49
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 10 2 14 2 10 15 8 3 8 3 u
50
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 10 2 14 2 10 15 8 15 3 8 3 u
51
Prim’s Algorithm u MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 10 2 14 2 10 15 8 15 3 8 3
52
Prim’s Algorithm u MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 6 4 9 5 10 2 9 14 2 10 15 8 15 3 8 3
53
Prim’s Algorithm u MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 4 6 4 9 5 10 2 9 14 2 10 15 8 15 3 8 3
54
Prim’s Algorithm u MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 4 6 4 9 5 5 2 9 14 2 10 15 8 15 3 8 3
55
Prim’s Algorithm u MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 4 6 4 9 5 5 2 9 14 2 10 15 8 15 3 8 3
56
Prim’s Algorithm u MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 4 6 4 9 5 5 2 9 14 2 10 15 8 15 3 8 3
57
Prim’s Algorithm u MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 4 6 4 9 5 5 2 9 14 2 10 15 8 15 3 8 3
58
Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u Q
key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 4 6 4 9 5 5 2 9 14 2 u 10 15 8 15 3 8 3
59
Review: Prim’s Algorithm
MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); What is the hidden cost in this code?
60
Review: Prim’s Algorithm
MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; DecreaseKey(v, w(u,v));
61
Review: Prim’s Algorithm
MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; DecreaseKey(v, w(u,v)); How often is ExtractMin() called? How often is DecreaseKey() called?
62
Review: Prim’s Algorithm
MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); What will be the running time? A: Depends on queue binary heap: O(E lg V) Fibonacci heap: O(V lg V + E)
63
Single-Source Shortest Path
Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v “Shortest-path” = minimum weight Weight of path is sum of edges E.g., a road map: what is the shortest path from Hattiesburg to Nashville?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.