Download presentation
Presentation is loading. Please wait.
1
Detector Description – basic concepts
Geant4: Detector description module Detector Description – basic concepts The full set of lecture notes of this Geant4 Course is available at
2
Geant4: Detector description module
Part I The Basics Part II Logical and physical volumes Part III Solids, touchables Part IV Optimisation technique & Advanced features
3
Detector Description: the Basics
PART 1 Detector Description: the Basics
4
Describe your detector
Geant4: Detector description module Describe your detector Derive your own concrete class from G4VUserDetectorConstruction abstract base class. Implementing the method Construct(): Modularize it according to each detector component or sub-detector: Construct all necessary materials Define shapes/solids required to describe the geometry Construct and place volumes of your detector geometry Define sensitive detectors and identify detector volumes which to associate them Associate magnetic field to detector regions Define visualization attributes for the detector elements The main class defining the detector geometry is derived from G4VUserDetectorConstruction. It is advised to modularize its design according to the geometry components (I.e. define a class for each geometry component), especially for complex geometry structures. Definition of attributes, like sensitive detectors, local fields or visualization are optional. G.Cosmo, Detector Description - Geant4 Course
5
Creating a Detector Volume
Geant4: Detector description module Creating a Detector Volume Solid Logical-Volume Physical-Volume Start with its Shape & Size Box 3x5x7 cm, sphere R=8m Add properties: material, B/E field, make it sensitive Place it in another volume in one place repeatedly using a function So you can re-use i) one solid for 10 or 100 or any number of logical volumes. ii) one logical volume for 100 or 1000 physical volumes. Solids are geometrical entities. They can also be used to describe sensitive volumes, ... G.Cosmo, Detector Description - Geant4 Course
6
Define detector geometry
Geant4: Detector description module Define detector geometry Three conceptual layers G4VSolid -- shape, size G4LogicalVolume -- daughter physical volumes, material, sensitivity, user limits, etc. G4VPhysicalVolume -- position, rotation G4Box G4Tubs G4VSolid G4VPhysicalVolume G4Material G4VSensitiveDetector G4PVPlacement G4PVParameterised G4VisAttributes G4LogicalVolume Possible attributes associated to a G4LogicalVolume: Magnetic field Material If sensitive, associated sensitive detector Quality of geometry optimization (smartless) Visualization attributes User limits (maximum allowed step, track length, minimum kinetic energy, …) … G.Cosmo, Detector Description - Geant4 Course
7
Define detector geometry
Basic strategy G4VSolid* pBoxSolid = new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m); G4LogicalVolume* pBoxLog = new G4LogicalVolume( pBoxSolid, pBoxMaterial, “aBoxLog”, 0, 0, 0); G4VPhysicalVolume* aBoxPhys = new G4PVPlacement( pRotation, G4ThreeVector(posX, posY, posZ), pBoxLog, “aBoxPhys”, pMotherLog, 0, copyNo); A unique physical volume which represents the experimental area must exist and fully contains all other components The world volume G.Cosmo, Detector Description - Geant4 Course
8
Detector Description: Logical and Physical Volumes
PART II Detector Description: Logical and Physical Volumes
9
Geant4: Detector description module
G4LogicalVolume G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial, const G4String& name, G4FieldManager* pFieldMgr=0, G4VSensitiveDetector* pSDetector=0, G4UserLimits* pULimits=0, G4bool optimise=true); Contains all information of volume except position: Shape and dimension (G4VSolid) Material, sensitivity, visualization attributes Position of daughter volumes Magnetic field, User limits Shower parameterisation Physical volumes of same type can share a logical volume. The pointers to solid and material must be NOT null Once created it is automatically entered in the LV store It is not meant to act as a base class It is possible to deactivate optimisation (voxelisation) of the geometry for a given logical volume. Optimisation is built by default, if the flag “optimise” is set to false, the whole hierarchy of volumes identified by the logical volume will not be optimised. Note that optimisation is always applied for logical volumes whose physical volumes are parameterised volumes. G.Cosmo, Detector Description - Geant4 Course
10
G.Cosmo, Detector Description - Geant4 Course
G4VPhysicalVolume G4PVPlacement Placement = One Volume A volume instance positioned once in a mother volume G4PVParameterised Parameterised = Many Volumes Parameterised by the copy number Shape, size, material, position and rotation can be parameterised, by implementing a concrete class of G4VPVParameterisation. Reduction of memory consumption Currently: parameterisation can be used only for volumes that either a) have no further daughters or b) are identical in size & shape. G4PVReplica Replica = Many Volumes Slicing a volume into smaller pieces (if it has a symmetry) G.Cosmo, Detector Description - Geant4 Course
11
Geant4: Detector description module
Physical Volumes repeated placement Placement: it is one positioned volume Repeated: a volume placed many times can represent any number of volumes reduces use of memory. Replica simple repetition, similar to G3 divisions Parameterised A mother volume can contain either many placement volumes OR one repeated volume G.Cosmo, Detector Description - Geant4 Course
12
Geant4: Detector description module
G4PVPlacement G4PVPlacement(G4RotationMatrix* pRot, const G4ThreeVector& tlate, G4LogicalVolume* pCurrentLogical, const G4String& pName, G4LogicalVolume* pMotherLogical, G4bool pMany, G4int pCopyNo); Single volume positioned relatively to the mother volume In a frame rotated and translated relative to the coordinate system of the mother volume Three additional constructors: A simple variation: specifying the mother volume as a pointer to its physical volume instead of its logical volume. Using G4Transform3D to represent the direct rotation and translation of the solid instead of the frame The combination of the two variants above Adopting the constructor using the pointer to the logical volume of the mother, is a very natural way of defining a physical volume, and is especially useful when creating sub-detectors: the mother volumes is not placed until a later stage of the assembly program. The G4Transform3D argument should be constructed by: i) First rotating it to align the solid to the system of reference of its mother volume, and ii) Then placing the solid at the location Transform3D.getTranslation(), with respect to the origin of the system of coordinates of the mother volume. This is useful for the people who prefer to think in terms of moving objects in a given reference frame. G.Cosmo, Detector Description - Geant4 Course
13
Parameterised Physical Volumes
Geant4: Detector description module Parameterised Physical Volumes User written functions define: the size of the solid (dimensions) Function ComputeDimensions(…) where it is positioned (transformation) Function ComputeTransformations(…) Optional: the type of the solid Function ComputeSolid(…) the material Function ComputeMaterial(…) Limitations: Applies to simple CSG solids only Daughter volumes allowed only for special cases Very powerful Consider parameterised volumes as “leaf” volumes For parameterised volumes the mother volume must be always specified, therefore the world volume can never be a parameterised volume. All methods in G4VPVParameterisation provides an argument (integer) for specifying the copy number of the parameterisation instance under consideration. Only parameterised volumes in which all the solids have the same size, currently allows the addition of daughter volumes. G.Cosmo, Detector Description - Geant4 Course
14
Uses of Parameterised Volumes
Geant4: Detector description module Uses of Parameterised Volumes Complex detectors with large repetition of volumes regular or irregular Medical applications the material in animal tissue is measured cubes with varying material G.Cosmo, Detector Description - Geant4 Course
15
Geant4: Detector description module
G4PVParameterised G4PVParameterised(const G4String& pName, G4LogicalVolume* pCurrentLogical, G4LogicalVolume* pMotherLogical, const EAxis pAxis, const G4int nReplicas, G4VPVParameterisation* pParam); Replicates the volume nReplicas times using the parameterisation pParam, within the mother volume The positioning of the replicas is dominant along the specified Cartesian axis If kUndefined is specified as axis, 3D voxelisation for optimisation of the geometry is adopted Represents many touchable detector elements differing in their positioning and dimensions. Both are calculated by means of a G4VPVParameterisation object Alternative constructor using pointer to physical volume for the mother G.Cosmo, Detector Description - Geant4 Course
16
Parameterisation example - 1
Geant4: Detector description module Parameterisation example - 1 G4VSolid* solidChamber = new G4Box("chamber", 100*cm, 100*cm, 10*cm); G4LogicalVolume* logicChamber = new G4LogicalVolume(solidChamber, ChamberMater, "Chamber", 0, 0, 0); G4double firstPosition = -trackerSize + 0.5*ChamberWidth; G4double firstLength = fTrackerLength/10; G4double lastLength = fTrackerLength; G4VPVParameterisation* chamberParam = new ChamberParameterisation( NbOfChambers, firstPosition, ChamberSpacing, ChamberWidth, firstLength, lastLength); G4VPhysicalVolume* physChamber = new G4PVParameterised( "Chamber", logicChamber, logicTracker, kZAxis, NbOfChambers, chamberParam); Example of parameterisation along the Z axis (kZAxis) NbOfChambers - Number of chambers firstPosition - Z of center of first chamber ChamberSpacing - Z spacing of centers ChamberWidth - Width of chamber firstLength - initial length lastLength - final length Use kUndefined for activating 3D voxelisation for optimisation G.Cosmo, Detector Description - Geant4 Course
17
Parameterisation example - 2
Geant4: Detector description module Parameterisation example - 2 class ChamberParameterisation : public G4VPVParameterisation { public: ChamberParameterisation( G4int NoChambers, G4double startZ, G4double spacing, G4double widthChamber, G4double lenInitial, G4double lenFinal ); ~ChamberParameterisation(); void ComputeTransformation (const G4int copyNo, G4VPhysicalVolume* physVol) const; void ComputeDimensions (G4Box& trackerLayer, const G4int copyNo, const G4VPhysicalVolume* physVol) const; : } Example of parameterisation along the Z axis (kZAxis) G.Cosmo, Detector Description - Geant4 Course
18
Parameterisation example - 3
Geant4: Detector description module Parameterisation example - 3 void ChamberParameterisation::ComputeTransformation (const G4int copyNo, G4VPhysicalVolume* physVol) const { G4double Zposition= fStartZ + (copyNo+1) * fSpacing; G4ThreeVector origin(0, 0, Zposition); physVol->SetTranslation(origin); physVol->SetRotation(0); } void ChamberParameterisation::ComputeDimensions (G4Box& trackerChamber, const G4int copyNo, const G4VPhysicalVolume* physVol) const G4double halfLength= fHalfLengthFirst + copyNo * fHalfLengthIncr; trackerChamber.SetXHalfLength(halfLength); trackerChamber.SetYHalfLength(halfLength); trackerChamber.SetZHalfLength(fHalfWidth); Example of parameterisation along the Z axis (kZAxis) G.Cosmo, Detector Description - Geant4 Course
19
Replicated Physical Volumes
Geant4: Detector description module Replicated Physical Volumes repeated The mother volume is sliced into replicas, all of the same size and dimensions. Represents many touchable detector elements differing only in their positioning. Replication may occur along: Cartesian axes (X, Y, Z) – slices are considered perpendicular to the axis of replication Coordinate system at the center of each replica Radial axis (Rho) – cons/tubs sections centered on the origin and un-rotated Coordinate system same as the mother Phi axis (Phi) – phi sections or wedges, of cons/tubs form Coordinate system rotated such as that the X axis bisects the angle made by each wedge The elements positions are calculated by means of a simple linear formula, and the elements completely fill the containing mother volume. If a G4PVReplica is positioned inside a given mother, it must be the only daughter volume for that mother. During tracking, translation and rotation of each replica object are computed according to the current active replication. G.Cosmo, Detector Description - Geant4 Course
20
Geant4: Detector description module
a daughter volume to be replicated mother volume G4PVReplica G4PVReplica(const G4String& pName, G4LogicalVolume* pCurrentLogical, G4LogicalVolume* pMotherLogical, const EAxis pAxis, const G4int nReplicas, const G4double width, const G4double offset=0); Alternative constructor: using pointer to physical volume for the mother An offset can only be associated to a mother offset along the axis of replication Features and restrictions: Replicas can be placed inside other replicas Normal placement volumes can be placed inside replicas, assuming no intersection/overlaps with the mother volume or with other replicas No volume can be placed inside a radial replication Parameterised volumes cannot be placed inside a replica The width of the replica refers to its extent along the axis of replication. G.Cosmo, Detector Description - Geant4 Course
21
Replica – axis, width, offset
Cartesian axes - kXaxis, kYaxis, kZaxis offset shall not be used Center of n-th daughter is given as -width*(nReplicas-1)*0.5+n*width Radial axis - kRaxis width*(n+0.5)+offset Phi axis - kPhi offset width G.Cosmo, Detector Description - Geant4 Course
22
Geant4: Detector description module
Replication example G4double tube_dPhi = 2.* M_PI; G4VSolid* tube = new G4Tubs("tube", 20*cm, 50*cm, 30*cm, 0., tube_dPhi*rad); G4LogicalVolume * tube_log = new G4LogicalVolume(tube, Ar, "tubeL", 0, 0, 0); G4VPhysicalVolume* tube_phys = new G4PVPlacement(0,G4ThreeVector(-200.*cm, 0., 0.*cm), "tubeP", tube_log, world_phys, false, 0); G4double divided_tube_dPhi = tube_dPhi/6.; G4VSolid* divided_tube = new G4Tubs("divided_tube", 20*cm, 50*cm, 30*cm, -divided_tube_dPhi/2.*rad, divided_tube_dPhi*rad); G4LogicalVolume* divided_tube_log = new G4LogicalVolume(divided_tube, Ar, "div_tubeL", 0, 0, 0); G4VPhysicalVolume* divided_tube_phys = new G4PVReplica("divided_tube_phys", divided_tube_log, tube_log, kPhi, 6, divided_tube_dPhi); Example of replication in Phi G.Cosmo, Detector Description - Geant4 Course
23
Divided Physical Volumes
Geant4: Detector description module Divided Physical Volumes Implemented as “special” kind of parameterised volumes Applies to CSG-like solids only (box, tubs, cons, para, trd, polycone, polyhedra) Divides a volume in identical copies along one of its axis (copies are not strictly identical) e.g. - a tube divided along its radial axis Offsets can be specified The possible axes of division vary according to the supported solid type Represents many touchable detector elements differing only in their positioning G4PVDivision is the class defining the division The parameterisation is calculated automatically using the values provided in input G.Cosmo, Detector Description - Geant4 Course
24
Geant4: Detector description module
PART III Detector Description: Solids & Touchables
25
Geant4: Detector description module
G4VSolid Abstract class. All solids in Geant4 derive from it Defines but does not implement all functions required to: compute distances to/from the shape check whether a point is inside the shape compute the extent of the shape compute the surface normal to the shape at a given point Once constructed, each solid is automatically registered in a specific solid store G.Cosmo, Detector Description – Geant4 Course 24
26
Geant4: Detector description module
Solids Solids defined in Geant4: CSG (Constructed Solid Geometry) solids G4Box, G4Tubs, G4Cons, G4Trd, … Analogous to simple GEANT3 CSG solids Specific solids (CSG like) G4Polycone, G4Polyhedra, G4Hype, … BREP (Boundary REPresented) solids G4BREPSolidPolycone, G4BSplineSurface, … Any order surface Boolean solids G4UnionSolid, G4SubtractionSolid, … G.Cosmo, Detector Description – Geant4 Course 25
27
Geant4: Detector description module
CSG: G4Tubs, G4Cons G4Tubs(const G4String& pname, // name G4double pRmin, // inner radius G4double pRmax, // outer radius G4double pDz, // Z half length G4double pSphi, // starting Phi G4double pDphi); // segment angle G4Cons(const G4String& pname, // name G4double pRmin1, // inner radius -pDz G4double pRmax1, // outer radius -pDz G4double pRmin2, // inner radius +pDz G4double pRmax2, // outer radius +pDz G.Cosmo, Detector Description - Geant4 Course
28
Specific CSG Solids: G4Polycone
Geant4: Detector description module Specific CSG Solids: G4Polycone G4Polycone(const G4String& pName, G4double phiStart, G4double phiTotal, G4int numRZ, const G4double r[], const G4double z[]); numRZ - numbers of corners in the r,z space r, z - coordinates of corners Additional constructor using planes Constructor by planes: G4Polycone( const G4String& pName, G4double phiStart, G4double phiTotal, G4int numZPlanes, const G4double zPlane[], const G4double rInner[], const G4double rOuter[]) G.Cosmo, Detector Description - Geant4 Course
29
Geant4: Detector description module
BREP Solids BREP = Boundary REPresented Solid Listing all its surfaces specifies a solid e.g. 6 squares for a cube Surfaces can be planar, 2nd or higher order elementary BREPS Splines, B-Splines, NURBS (Non-Uniform B-Splines) advanced BREPS Few elementary BREPS pre-defined box, cons, tubs, sphere, torus, polycone, polyhedra Advanced BREPS built through CAD systems In picture: G4double zval[6] = { -4000*mm, -3500*mm, -3500*mm, -1500*mm, -1500*mm, -1000*mm }; G4double rmin[6] = { 500*mm, 500*mm, 500*mm, 500*mm, 500*mm, 500*mm }; G4double rmax[6] = { 500*mm, 2000*mm, 1000*mm, 1000*mm, 2000*mm, 500*mm }; G4BREPSolidPCone *Solid = new G4BREPSolidPCone( "BREPSolidPCone", 0.0*rad, twopi*rad, 6, zval[0], zval, rmin, rmax ); G.Cosmo, Detector Description - Geant4 Course
30
BREPS: G4BREPSolidPolyhedra
Geant4: Detector description module BREPS: G4BREPSolidPolyhedra G4BREPSolidPolyhedra(const G4String& pName, G4double phiStart, G4double phiTotal, G4int sides, G4int nZplanes, G4double zStart, const G4double zval[], const G4double rmin[], const G4double rmax[]); sides - numbers of sides of each polygon in the x-y plane nZplanes - numbers of planes perpendicular to the z axis zval[] - z coordinates of each plane rmin[], rmax[] - Radii of inner and outer polygon at each plane In picture: #define VECSIZE 6 G4int sides = 5; G4double rmin[VECSIZE] = { 100*mm, 100*mm, 100*mm, 100*mm, 100*mm, 100*mm }; G4double rmax[VECSIZE] = { 700*mm, 800*mm, 400*mm, 400*mm, 600*mm, 500*mm }; G4double zval[VECSIZE] = { 3500*mm, 3800*mm, 4000*mm, 4300*mm, 4500*mm, 5000*mm }; G4BREPSolidPolyhedra *sphedra = new G4BREPSolidPolyhedra( "sphedra", pi/2*rad, 2*pi*rad, sides, VECSIZE, zval[0], zval, rmin, rmax); G4LogicalVolume *lvphedra = new G4LogicalVolume( sphedra, Al, "lvphedra" ); G4PVPlacement *pvphedra = new G4PVPlacement( 0, G4ThreeVector(), "pvphedra1", lvphedra, worldPhysic, false, 0 ); G.Cosmo, Detector Description - Geant4 Course
31
Geant4: Detector description module
Boolean Solids G4UnionSolid G4IntersectionSolid G4SubtractionSolid Solids can be combined using boolean operations: G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid Requires: 2 solids, 1 boolean operation, and an (optional) transformation for the 2nd solid 2nd solid is positioned relative to the coordinate system of the 1st solid Example: G4Box box(“Box", 20, 30, 40); G4Tubs cylinder(“Cylinder”, 0, 50, 50, 0, 2*M_PI); // r: > 50 // z: > 50 // phi: 0 -> 2 pi G4UnionSolid union("Box+Cylinder", &box, &cylinder); G4IntersectionSolid intersect("Box Intersect Cylinder", &box, &cylinder); G4SubtractionSolid subtract("Box-Cylinder", &box, &cylinder); Solids can be either CSG or other Boolean solids Note: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent solids Passive transformation: a rotation matrix/translation is provided to transform the coordinate system of the 1st solid to the coordinate system of the 2nd solid. The final transformation in this case is NOT copied, therefore, once defined and used it must not be modified. Active transformation: a transformation (G4Transform3D) is first created to move the 2nd solid to the correct position. The transformation in this case is stored (copied) in the final boolean solid. G.Cosmo, Detector Description - Geant4 Course
32
How to identify a volume uniquely?
Geant4: Detector description module How to identify a volume uniquely? Need to identify a volume uniquely Is a physical volume pointer enough? NO! Touchable 5 4 1 2 3 pPV Later Step A physical volume can represent many actual volumes in a detector, due to: replica, parameterisation repetition of mother logical volume in different places in the hierarchy To identify a volume uniquely, we must ‘anchor’ it to create a touchable. A touchable may have information on all levels of the hierarchy, from the world volume to the current physical volume. Touchable G.Cosmo, Detector Description - Geant4 Course
33
Geant4: Detector description module
What can a touchable do ? All generic touchables can reply to these queries: positioning information (rotation, position) GetTranslation(), GetRotation() Specific types of touchable also know: (solids) - their associated shape: GetSolid() (volumes) - their physical volume: GetVolume() (volumes) - their replication number: GetReplicaNumber() (volumes hierarchy or touchable history): info about its hierarchy of placements: GetHistoryDepth() At the top of the history tree is the world volume modify/update touchable: MoveUpHistory(), UpdateYourself() take additional arguments MoveUpHistory(num) moves the current pointer of the touchable to point “num” levels up in the history tree. Therefore, num=1 means moving to point to the mother of the current volume. The state of the touchable is changed by calling this method. G.Cosmo, Detector Description - Geant4 Course
34
Benefits of Touchables in track
Geant4: Detector description module Benefits of Touchables in track Permanent information stored to avoid implications with a “live” volume tree Full geometrical information available to processes to sensitive detectors to hits A1 A2 G.Cosmo, Detector Description - Geant4 Course
35
Geant4: Detector description module
Touchable - 1 G4Step has two G4StepPoint objects as its starting and ending points. All the geometrical information of the particular step should be got from “PreStepPoint” Geometrical information associated with G4Track is basically same as “PostStepPoint” Each G4StepPoint object has: position in world coordinate system global and local time material G4TouchableHistory for geometrical information Copy-number, transformations Handles (or smart-pointers) to touchables are intrinsically used. Touchables are reference counted Since release 4.0 touchables are reference counted. the lifetime of a single touchable object is assured for the whole lifetime of the application memory management of the created touchables is performed in an automatic way G.Cosmo, Detector Description - Geant4 Course
36
Geant4: Detector description module
Touchable - 2 G4TouchableHistory has information of geometrical hierarchy of the point G4Step* aStep = ..; G4StepPoint* preStepPoint = aStep->GetPreStepPoint(); G4TouchableHandle theTouchable = preStepPoint->GetTouchableHandle(); G4int copyNo = theTouchable->GetReplicaNumber(); G4int motherCopyNo = theTouchable->GetReplicaNumber(1); G4ThreeVector worldPos = preStepPoint->GetPosition(); G4ThreeVector localPos = theTouchable->GetHistory()-> GetTopTransform().TransformPoint(worldPos); In the example code, it is shown how to use touchables for: Retrieve the copy number of the current volume Retrieve the copy number of the mother volume Retrieve the absolute position in global world coordinates Transform the position to local coordinates G.Cosmo, Detector Description - Geant4 Course
37
G.Cosmo, Detector Description - Geant4 Course
Copy numbers Suppose a calorimeter is made of 4x5 cells and it is implemented by two levels of replica. In reality, there is only one physical volume object for each level. Its position is parameterized by its copy number To get the copy number of each level, suppose what happens if a step belongs to two cells CopyNo = 0 1 2 3 4 CopyNo = 1 CopyNo = 2 CopyNo = 3 Remember geometrical information in G4Track is identical to "PostStepPoint". You cannot get the collect copy number for "PreStepPoint" if you directly access to the physical volume Use touchable to get the proper copy number, transform matrix,… G.Cosmo, Detector Description - Geant4 Course
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.