Download presentation
Presentation is loading. Please wait.
1
Building and Evaluating SDS
Julia Hirschberg LSA07 353 9/19/2018
2
Today Natural Language Understanding (NLU) in SDS
Meaning representations Evaluating SDS 9/19/2018
3
The NLU Component What kinds of meanings do we want to capture?
Entities, actions, events, times… E.g. an airline travel domain Entities: flights, airlines, cities Actions: look up, reserve, fly Modifiers: first, next, latest Events: departures, arrivals Temporals: dates, hours How should we represent these in our system? What does an SDS need from a meaning representation? 9/19/2018
4
Be able to Answer questions Determine truth Draw inferences
When does the first flight from Boston to Philadelphia leave on July 7? Determine truth Is there a flight from Boston to Philadelphia? Draw inferences Is there a connecting flight to Denver? 9/19/2018
5
Most SDS use Semantic Grammars
Robust parsing, or, information extraction Define grammars specifically in terms of the semantic information we want to extract Domain specific rules correspond to items in the domain I want to go from Boston to Baltimore on Thursday, September 24th TripRequest Greeting Need-specification travel-verb from City to City on Date Greeting {Hello|Hi|Um|ε} Need-specification {I want|I need} … 9/19/2018
6
Grammar elements can be mapped directly to slots in semantic frames
From-City To-City Date Airline Boston Baltimore 9/24/07 ? 9/19/2018
7
Drawbacks of Semantic Grammars
Lack of generality A new one for each application Very costly in development time Constant updates Can be very large, depending on how much coverage you want them to have If users go outside grammar, things may break disastrously I want to leave from my house at 10 a.m. I want to talk to a person. 9/19/2018
8
Semantic HMMs Train sequential model on labeled corpora to identify semantic slots from user input I want /Need spec to go /Travel verb to Boston /To-city on Thursday /Date. Relies on training corpus to provide Likely sequences of semantic slots Likely words associated with those slots Can be used to fill slots in template Or to directly generate a response while processing input 9/19/2018
9
Managing User Input Rely heavily on knowledge of task and constraints on user actions Handle fairly sophisticated phenomena I want to go to Boston next Thursday. I want to leave from there on Friday for Baltimore. TripRequest Need-spec travel-verb from City on Date for City Dialogue postulates and simple discourse history handle reference resolution Use prior probabilities based on training corpus to resolve ambiguities, e.g. Boston Baltimore on July 12 9/19/2018
10
Priming User Input Hypothesis: Users tend to use the vocabulary and syntax the system uses Lexical entrainment experiments (Clark & Brennan ’96) Re-use of system prompt vocabulary/syntax: Please tell me where you would like to leave/depart from. I would like to leave/depart from Boston… Evidence from KTH data collections in field 9/19/2018
11
User Responses to Vaxholm
The answers to the question: “What weekday do you want to go?” (Vilken veckodag vill du åka?) 22% Friday (fredag) 11% I want to go on Friday (jag vill åka på fredag) 11% I want to go today (jag vill åka idag) 7% on Friday (på fredag) 6% I want to go a Friday (jag vill åka en fredag) - are there any hotels in Vaxholm? (finns det några hotell i Vaxholm) 9/19/2018
12
Verb Priming: How often do you go abroad on holiday?
Hur ofta åker du utomlands på semestern? Hur ofta reser du utomlands på semestern? jag åker en gång om året kanske jag åker ganska sällan utomlands på semester jag åker nästan alltid utomlands under min semester jag åker ungefär 2 gånger per år utomlands på semester jag åker utomlands nästan varje år jag åker utomlands på semestern varje år jag åker utomlands ungefär en gång om året jag är nästan aldrig utomlands en eller två gånger om året en gång per semester kanske en gång per år ungefär en gång per år åtminståne en gång om året nästan aldrig jag reser en gång om året utomlands jag reser inte ofta utomlands på semester det blir mera i arbetet jag reser reser utomlands på semestern vartannat år jag reser utomlands en gång per semester jag reser utomlands på semester ungefär en gång per år jag brukar resa utomlands på semestern åtminståne en gång i året en gång per år kanske en gång vart annat år varje år vart tredje år ungefär nu för tiden inte så ofta varje år brukar jag åka utomlands 9/19/2018
13
Results no reuse no answer 4% 2% other 24% reuse 52% 18% ellipse
9/19/2018
14
Issue: Training and SDS
Is implicit training ‘better’ than explicit? Is it easier to train the user than to retrain the system 9/19/2018
15
Evaluating Dialogue Systems
PARADISE framework (Walker et al ’00) “Performance” of a dialogue system is affected both by what gets accomplished by the user and the dialogue agent and how it gets accomplished Maximize Task Success Minimize Costs Efficiency Measures Qualitative Measures 9/19/2018
16
Task Success Task goals seen as Attribute-Value Matrix
ELVIS retrieval task (Walker et al ‘97) “Find the time and place of your meeting with Kim.” Attribute Value Selection Criterion Kim or Meeting Time 10:30 a.m. Place 2D516 Task success defined by match between AVM values at end of with “true” values for AVM 9/19/2018
17
Metrics Efficiency of the Interaction:User Turns, System Turns, Elapsed Time Quality of the Interaction: ASR rejections, Time Out Prompts, Help Requests, Barge-Ins, Mean Recognition Score (concept accuracy), Cancellation Requests User Satisfaction Task Success: perceived completion, information extracted 9/19/2018
18
Experimental Procedures
Subjects given specified tasks Spoken dialogues recorded Cost factors, states, dialog acts automatically logged; ASR accuracy,barge-in hand-labeled Users specify task solution via web page Users complete User Satisfaction surveys Use multiple linear regression to model User Satisfaction as a function of Task Success and Costs; test for significant predictive factors 9/19/2018
19
User Satisfaction: Sum of Many Measures
Was Annie easy to understand in this conversation? (TTS Performance) In this conversation, did Annie understand what you said? (ASR Performance) In this conversation, was it easy to find the message you wanted? (Task Ease) Was the pace of interaction with Annie appropriate in this conversation? (Interaction Pace) In this conversation, did you know what you could say at each point of the dialog? (User Expertise) How often was Annie sluggish and slow to reply to you in this conversation? (System Response) Did Annie work the way you expected her to in this conversation? (Expected Behavior) From your current experience with using Annie to get your , do you think you'd use Annie regularly to access your mail when you are away from your desk? (Future Use) 9/19/2018
20
Performance Functions from Three Systems
ELVIS User Sat.= .21* COMP * MRS * ET TOOT User Sat.= .35* COMP + .45* MRS - .14*ET ANNIE User Sat.= .33*COMP + .25* MRS +.33* Help COMP: User perception of task completion (task success) MRS: Mean recognition accuracy (cost) ET: Elapsed time (cost) Help: Help requests (cost) 9/19/2018
21
Performance Model Perceived task completion and mean recognition score are consistently significant predictors of User Satisfaction Performance model useful for system development Making predictions about system modifications Distinguishing ‘good’ dialogues from ‘bad’ dialogues But can we also tell on-line when a dialogue is ‘going wrong’ 9/19/2018
22
Next Class J&M 22.5 Jurafsky et al ’98 Rosset & Lamel ‘04 9/19/2018
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.