Presentation is loading. Please wait.

Presentation is loading. Please wait.

Context dependent pollinator limitation

Similar presentations


Presentation on theme: "Context dependent pollinator limitation"— Presentation transcript:

1 Context dependent pollinator limitation
Evolutionary Ecology of Multispecific Interactions in Changing Environments ATBC 2007, Morelia, Michoacan, MEXICO Context dependent pollinator limitation Carol C. Horvitz1, Johan Ehrlén2 and David Matlaga1 1University of Miami, Coral Gables, FL USA 2Stockholm University, SE Stockholm, SWEDEN

2 Supplemental pollination = higher plant fitness?
Issue Supplemental pollination = higher plant fitness?

3 Demographic, biotic, abiotic variability in the environment
Contexts Demographic, biotic, abiotic variability in the environment Ecological, evolutionary and conservation consequences of pollen limitation e.g. Ashman et al. 2004

4 Candidate currencies for measuring fitness
Fitness components Reproduction Survival Growth Population growth rate Stochastic growth rate

5 Demographic transitions and fitness in a constant world
N(t+1) = A N(t) A is a population projection matrix Transitions and contributions between stages, aij = fitness components λ = population growth rate

6 Demographic transitions and fitness in a variable world
N(t+1) = X(t) N(t) X(t) is a random variable A1, A2, A3…AK , K environmental states Transitions and contributions in each environment, aijβ λS = stochastic growth rate Tuljapurkar 1982, 1990

7 In a variable world: sequences, frequencies and new sensitivities
Environmental dynamics sequences along sample paths an expected long run stationary distribution λs is sensitive to perturbations of means, variances, and transitions in particular environmental states Eδ, Eμ, Eβ and others… Tuljapurkar et al Am Nat Horvitz et al Ecology

8 Lathyrus vernus Long lived perennial forest herb
Ranges from central and northern Europe to Siberia Particularly well-studied example

9 not exactly tropical… Deciduous forest Quercus, Fraxinus, Betula
Tullgarnsnäset SW of Stockholm 58º6’ N, 17º4’ E Deciduous forest Quercus, Fraxinus, Betula

10 Bruchus (seed predator) Demographic costs of seeds and beetles
Players Bombus (pollinator) Bruchus (seed predator) Demographic costs of seeds and beetles

11 Field experiment λ was negatively affected
Supplemental pollen increased seed set within the year BUT Next year’s flower production and growth reduced λ was negatively affected Ehrlen and Eriksson 1995, Ecology 69:

12 End of story? NO! Changing the demographic context can offset costs to λ In variable environments the currency for measuring the effects is λs frequency and sequence of high pollination years relative to other kinds of years determine outcome

13 Stages seeds seedlings small intermediate large vegetative
large flowering dormant rhizome Ehrlen and Eriksson 1995, Ecology 69:

14 Open-pollinated Ehrlen and Eriksson 1995, Ecology 69:

15 Hand-pollinated Ehrlen and Eriksson 1995, Ecology 69:

16 Costs to fates of large flowering plants and to λ
More seeds Shrink Go Dormant Flower Less Data in Ehrlen and Eriksson 1995, Ecology 69:

17 But 53% of seeds had been lost to beetles
(both open and hand pollinated plants) Observed seeds = “Gross Seeds” - Beetles Beetles cost as much as seeds… Observed fates really for “Gross Seeds” Data in Ehrlen and Eriksson 1995, Ecology 69:

18 Elimination of seed predators lessens negative effect on λ
Data in Ehrlen and Eriksson 1995, Ecology 69:

19 Demographic context: single constant environment
Using λ to measure fitness Δ Seed survival Δ Germination Δ Seedling survival Using λs to measure fitness Some years High Pollination Some years Low Pollination High germination year added Δ Frequency Δ Sequence (All simulations that follow use the predator-absent scenario)

20 Higher seed survival can compensate for cost

21 Higher germination can compensate for cost

22 Higher seedling survival can NOT compensate for cost

23 Demographic context: multiple environmental states
Using λ to measure fitness Δ Seed survival Δ Germination Δ Seedling survival Using λs to measure fitness Some years High Pollination Some years Low Pollination High germination year added Δ Frequency Δ Sequence (All simulations that follow use the predator-absent scenario)

24 2-state model for variable environment
Probability rules that generate environmental sequences Columns sum to 1 Dot size indicates probability Color coded for environmental state to which the system transitions Env at time t+1 Env at time t

25 2-state IID models Increasing probability of going to a
high pollination year

26 Variable environments: Increasing frequency of high pollination year decreases fitness

27 Focus on world with 70% high, 30% low pollination
What is the outcome of adding some high germination years among the low pollination years?

28 Now there are three environments
Low pollination (as before) High pollination (as before) Low pollination accompanied by High (9x) germination λ = 1.063 λ = 1.055 λ = 1.157

29 3-state IID models High germination any time

30 3-state Markov models High germination only after high pollination

31 Variable environments: increasing frequency of high germination years increases fitness
Sequence matters

32 Changing the demographic context can offset costs to λ
Conclusions Changing the demographic context can offset costs to λ In variable environments the currency for measuring the effects is λs frequency and sequence of high pollination years relative to other kinds of years determine outcome

33 Thanks Rodolfo and John 2006-08 NSF OPUS Uppsala University
Stockholm University


Download ppt "Context dependent pollinator limitation"

Similar presentations


Ads by Google