Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB:

Similar presentations


Presentation on theme: "The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB:"— Presentation transcript:

1 The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB:
Observability and Precision Analyses at Present and Future Colliders Shufang Su • U. of Arizona A. Dedes, S. Heinemeyer, SS G. Weiglein, hep-ph/

2 Motivation LEP results on Higgs searches
- LEP results on Higgs searches 95% CL mHSM  GeV , 1.7  mHSM  116 GeV MSSM light Higgs boson h0 mh  135 GeV Higgs searches soft SUSY-breaking parameters MSSM: 105 new SUSY breaking parameters out of control mechanism for SUSY breaking: (flavor blind) predictive, relate Higgs sector to other SUSY particles low energy MSSM (visible sector) 105 parameters SUSY-breaking (hidden sector) a few parameters gauge-mediated SUSY breaking (GMSB) gauge interaction gravity gravity-mediated SUSY breaking (SUGRA) anomaly-mediated SUSY breaking (AMSB) anomaly something S. Su ASBSII

3 Goal Individual analysis for each scenario and MSSM exists
- Individual analysis for each scenario and MSSM exists (lots of references … ) We treat three soft SUSY-breaking scenarios equal allow a direct comparison of results/phenomenology Previous analyses All parameters except one (e.g. mA) kept fixed complete knowledge of SUSY parameters unrealistic enhancement of sensitivity Our analyses: mSUGRA, mGMSB, mAMSB Vary all high-energy input parameters Combine with mA/other SUSY particle mass from LHC J.A. Bagger, K. Matchev, D.M. Pierce, R. zhang, phys. Rev. D 55 (1997) 3188 K.T. Matchev, D.M. Pierce, phys. Lett. B 445 (1999) 331 W. de Boer, hep-ph/ T.A. Kaeding, S. Nandi, hep-ph/ S. Su, Nucl. Phys. B 573 (2000) 87 A. Dedes, S. Heinemeyer, P. Teixeira-Dias, G. Weiglein, Jour. Phys. G 26 (2000) 582 B. Allanach, A. Dedes, JHEP 0006 (2000) 017 S. Ambrosanio, S. Heinemeyer, G. Weiglein, hep-ph/ , hep-ph/ J. Ellis, G. Ganis, D.V. Nanopoulos, K.A. Olive, Phys. Lett B 502 (2001) 171 A. Djouadi, M. Drees, J. Kneur, JHEP 0108 (2001) 055 J. Ellis, S. Heinemeyer, K. Olive, G. Weiglein, Phys. Lett. B 515 (2001) 348, JHEP 0301 (2003) 006 J. Guasch, W. Hollik, S. Penaranda, Phys. Lett. B 515 (2001) 367 M. Carena, H. Haber, H. Logan, S. Mrenna, Phys. Rev. D 65 (2002) S. Dawson, S. Heinemeyer, Phys. Rev. D 66 (2002) S. Su ASBSII

4 Outline Introduction Procedure and additional constrains
- Introduction MSSM Higgs sector soft SUSY-breaking scenario: mSUGRA, mGMSB, mAMSB Procedure and additional constrains Observability of h0 at current and future colliders Precision analyses of h0 decay branching ratio Deviations in mSUGRA, mGMSB, mAMSB Bounds on mA and high-energy input parameters Distinguish three SUSY-breaking scenarios Conclusions S. Su ASBSII

5 MSSM Higgs sector Two Higgs doublet Higgs potential
- Two Higgs doublet Higgs potential Electroweak symmetry breaking ||, b are replaced by mZ, tan= v2/v1 Physical states: h0,H0,A0,H, Goldstone bosons: G0,G S. Su ASBSII

6 Measurement of Higgs masses and couplings
CP-even Higgs h0,H0 - In the 10-20 basis Mass matrix mA2=2b/sin 2 Tree level mh < |cos 2|mZ < mZ loop contribution to mh from t-t sector (dominant) (G.Degrassi, S.Heinemeyer, W.Hollik, P.Slavich and G.Weiglein ’02) Two loop calculation: mh  135 GeV Measurement of Higgs masses and couplings information about soft SUSY-breaking parameters S. Su ASBSII

7 Present status of mh prediction in MSSM
-  Used for LEP analysis until 1999 RG improved one-loop effective potential results Leading logs at two-loop level program: subhole (M. Carena, M. Quiros, C. Wagner ’95)  Used since end of 1999 Feynman-diagrammatic two-loop results Complete one-loop + dominant two-loop corrections program: FeynHiggs (S. Heinemeyer, W. Hollik, G. Weiglein ’98,’00,’01) Remaining theoretical uncertainties in mh prediction Unknown higher-order corrections  mh  3 GeV - Uncertainties in input parameters mt,…,mA,tan,mt1,mt2,t,mg mt  5 GeV  mh  5 GeV (G.Degrassi, S.Heinemeyer, W.Hollik, P.Slavich and G.Weiglein ’02) Precise knowledge of mt is important S. Su ASBSII

8 FD approach of MSSM Higgs sector
- Most relevant parameters for MSSM Higgs sector: mA, tan, mt1, mt2, t, mb1, mb2, b, , mg, M1, M2. Use FD approach within on-shell renormalization scheme mh, mH given by poles of the h0-H0 propagator matrix Effective mixing angle eff Fortran code: FeynHiggs S. Su ASBSII

9 Minimal Super Gravity mediated SUSY-breaking (mSUGRA)
{ m0, m1/2, A0, tan, sign  } m0 : common scalar mass at GUT scale m1/2 : common gaugino mass at GUT scale A0 : common trilinear scalar coupling at GUT scale tan : low energy input sign  : low energy input S. Su ASBSII

10 Minimal Gauge mediated SUSY-breaking (mGMSB)
SUSY breaking is mediated by SM gauge interactions through messenger sector { Mmess, Nmess, , tan, sign  } Mmess : messenger mass scale Nmess : messenger index  : soft SUSY-breaking mass scale S. Su ASBSII

11 Minimal Anomaly mediated SUSY-breaking (mAMSB)
SUSY breaking on a separate brane is communicated to the visible sector via super-Weyl anomaly { maux, m0, tan, sign  } maux : SUSY breaking scale (gravitino mass) m0 : additional mass scale for scalar (to keep ml > 0 ) S. Su ASBSII

12 High-energy parameters in mSUGRA, mGMSB, mAMSB
Procedure - High-energy parameters in mSUGRA, mGMSB, mAMSB RG running Further constraints EW precision data, non-observation of SUSY particles, etc. Low-energy parameters FeynHiggs (FD approach) h0 production and decay Constraints on mA,tan ... Precision measurements of h0 decay at LC and C Distinguish three scenarios Observability at Tevatron and LHC S. Su ASBSII

13 High-energy input parameter
mSUGRA mGMSB mAMSB 50 GeV m0 1 TeV 10 TeV  200 TeV 20 TeV maux 100 TeV 50 GeV m1/21 TeV 1.01  Mmess105  0 m0 2 TeV -3 TeV A0 3 TeV 1 Nmess 8 1.5 tan 60 1.5 tan 55 sign = + 1 Positive : favored by g-2 and BR(b ! s ) S. Su ASBSII

14 Additional constraints
- LEP Higgs exclusion bounds Precision observable:  SUSY  3  10-3 Experimental bounds on SUSY particle masses mt=175 GeV (mh/ mt = 1 GeV/1 GeV) No SUSY CP-violating phases R-parity conserved Success REWSB No color/charge breaking minima LSP uncolored and uncharged (neutralino LSP in mSUGRA and mAMSB) Restrict to positive : favored by g-2 and Br(b ! s ) S. Su ASBSII

15 Previous work LEP Higgs searches : exclusion region in mh0-tan
S. Ambrosanio, A. Dedes, S. Heinemeyer, SS, G. Weiglein NPB 624, 3 (2002) LEP Higgs searches : exclusion region in mh0-tan Slight excess of 116 GeV Higgs interpreted as light CP-even Higgs with SM-like coupling corresponding SUSY particle spectrum Strong enhancement of b, Yukawa coupling » sineff / cos  small mA, large tan Strong suppression of h ! bb,  possible in mSUGRA MSSM SUGRA GMSB AMSB mh0max (GeV) 135 127 123 125 tanmin 0.5 or 2.4 2.9 3.1 3.8 S. Su ASBSII

16 Higgs production and decay
- Tevatron qq!V!Vh (V=W,Z) LHC gg!h qq,gg!tt!tth VV!h LC e+e-!Z!Zh C !h (h! bb,cc,+-,+-): higher-order correction included (h ! ,gg,WW): Hdecay (A.Djouadi, J.Kalinowski, M.Spira, ’97-’03) S. Su ASBSII

17 Channels for Higgs study
- Higgs boson decay Higgs study channels Tevatron qq ! V ! Vh ! Vbb (V=W,Z) LHC gg ! h ! , VV ! h ! +-, WW*,  qq,gg ! tt ! tth ! ttbb LC e+e- ! Z ! Zh ! Zbb,Zcc,Z+-,ZWW*,Zgg WW! h ! bb,cc,+-,WW*,gg C  ! h ! bb, WW*,  S. Su ASBSII

18 Observability of h0 Tevatron LHC V ! Vh ! Vbb suppressed mGMSB
- Tevatron V ! Vh ! Vbb suppressed not more than 10% discovery potential as good as SM Higgs LHC mGMSB 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan gg ! h !  suppression of 50% or more 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan mAMSB mSUGRA 10 30 40 60 50 20 1000 1400 600 200 1800 mA (GeV) tan < 10% (mSUGRA, mGMSB) upto 20% (mAMSB) 10-20% (mSUGRA, mGMSB) < 10% (mAMSB) S. Su ASBSII

19 Observability of h0 (cont’)
- LHC qq,gg ! tt ! tth ! ttbb suppressed no more than 10% VV ! h (Plehn, Rainwater, Zeppenfeld ’99, ’00) mSUGRA mGMSB, mAMSB WW ! h ! +- differ < 10% enhanced everywhere small mA, large tan suppression no suppression WW ! h ! WW*,  suppression at small mA LC easily observable even with strong suppression S. Su ASBSII

20 Observability of h0 (cont’)
- C mSUGRA mGMSB, mAMSB  ! h ! bb, +- small suppression/ enhancement always enhanced very large tan suppression no suppression  ! h ! WW*,  suppression > 20% suppression > 50% mGMSB mAMSB 50 50 40 40 tan  30 tan  30 20 20 10 10  ! h !  400 800 1200 1600 400 800 1200 1600 S. Su ASBSII mA (GeV) mA (GeV)

21 Precision analyses of Higgs coupling
- concentrate on LC and C focus on Higgs sector Anticipated precision h ! bb 1.5% h ! +- 4.5% LC h ! cc 6% h ! gg 4% h ! WW* 3% 2% C 5% h !   11% direct detection of A0 difficult deviation from SM Higgs coupling  indirect bound on mA differ from previous analyses - all but one parameter kept fixed require knowledge of SUSY parameters - scan over parameter space reduced sensitivity “worst case” scenario § n: § n £ precision S. Su ASBSII

22 Sensitivity in mA-tan plane
mSUGRA LC: h! WW* 1 mA  500 GeV 3 mA  550 GeV 2 mA  700 GeV 1 mA  1000 GeV suppression in h! bb, +- enhancement in h! cc, WW*  35  tan  55 sensitivity in C slightly worse S. Su ASBSII

23 Sensitivity in mA-tan plane (cont’)
mAmax (GeV) -1 -2 -3 mSUGRA 1000 700 550 mGMSB 1150 750 600 mAMSB 1300 850 LC: h ! WW* no enhancement mGMSB 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan mAMSB S. Su ASBSII

24 Sensitivity to high-energy parameters
mSUGRA mild bound on m0 stronger bound on m1/2 3 7 9 10£ 104 5 1000 1400 600 200 1 1800 m0 (GeV) maux mAMSB VVh!cc mSUGRA -1  -2  -3  m1/2max (GeV) 650 450 350 mGMSB deviation from SM coupling not sufficient to constrain Mmess and  small deviation  lower bound on Mmess and  mAMSB 2 , 3  deviation wide range of m0 and maux mAMSB 2  3  m0max (GeV) 1400 1100 mauxmax (GeV) 7.5£104 6£104 S. Su ASBSII

25 Distinguish SUSY Breaking Scenario
- 500 GeV  mA  600 GeV tan  30 AMSB GMSB SUGRA if we know ranges of mA, tan from LHC if we see deviations of coupling at LC Can we distinguish various SUSY breaking scenario? 800 GeV  mt1  900 GeV ~ 900 GeV  mg  1000 GeV ~ Yhbb » sineff/cos 12 ! eff mSUGRA large and negative mGMSB small mAMSB large and positive S. Su ASBSII

26 Conclusion Investigate relevant production and decay channels of h0
- Investigate relevant production and decay channels of h0 - Tevatron, LHC, LC and C -mSUGRA, mGMSB and mAMSB Observability - Tevatron: as good as SM Higgs; LC: ensured - LHC: gg ! h ! , C: h ! WW*, , small mA, large tan problematic (mGMSB, mAMSB) Precision measurement of BR at LC and C bound on mA and tan: mA<1 TeV for 2-3  deviation - biggest sensitivity from LC: h ! WW*, cc - suppression in h ! bb, +-, enhancement in h ! cc, WW*  35  tan  55 (mSUGRA) bound on high-energy input parameters - m1/2 (mSUGRA), m0 (mAMSB) Distinguish different SUSY breaking scenarios S. Su ASBSII


Download ppt "The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB:"

Similar presentations


Ads by Google