Download presentation
Presentation is loading. Please wait.
1
Quarkonia & XYZ at e+e– colliders
“Charmonium production & decay”, 6-8 March 2013, LAL, Orsay Quarkonia & XYZ at e+e– colliders Roman Mizuk ITEP, Moscow
2
Spectroscopy strong interactions at low energy
Ultimate theory : Good accuracy for ground states High excitations more difficult Not intuitive Lattice QCD Effective theories / phenomenological models Quark Model Collective degrees of freedom: constituent quarks Hadrons: qq and qqq _ g valence gluons qq di-quarks qqq tri-quarks, … gg glueballs qqg hybrids qqqq tetraquarks, … _ Exotics _ _ Theory & experiment exotics among light mesons – no established states Heavy quarkonia – observation of anomalous XYZ states. Unexpected.
3
Charmonium table Potential models “Old” states (observed before 1980)
Y(4660) Z(4430)+ Y(4360) X(4160) Y(4260) Z(4250)+ “Old” states (observed before 1980) X(3872) Y(3915) Z(4050)+ Y(4008) DD _ X(3940) 2(1D) New states (last decade) New states with unusual properties S=1 S=1 S=0 S=0 JPC L=0 L=1 L=2 States below DD threshold are narrow (annihilation or other charmonia) _ States above DD threshold are broad ( DD, DD*, ...) _ 3
4
Charmonium Bottomonium
Y(4660) Z(4430)+ (11020) Y(4360) 11.00 (10860) X(4160) Y(4260) Y(3915) Zb + X(3872) 10.75 Y(4008) DD _ X(3940) (4S) 2M(B) 2(1D) hb(3P) 10.50 b(3P) (2D) b(3S) (3S) hb(2P) b(2P) 10.25 (1D) S=1 S=1 S=0 S=0 (2S) b(2S) 10.00 hb(1P) b(1P) JPC L=0 L=1 L=2 9.75 9.50 (1S) b(1S) - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 4
5
Charmonium Bottomonium
Y(4660) Z(4430)+ Above thresholds (11020) Y(4360) 11.00 (10860) X(4160) Y(4260) Zb + X(3872) Y(3915) 10.75 Thresholds Y(4008) DD _ X(3940) (4S) 2M(B) 2(1D) hb(3P) 10.50 b(3P) (2D) b(3S) (3S) hb(2P) b(2P) 10.25 (1D) S=1 S=1 S=0 S=0 (2S) b(2S) 10.00 hb(1P) b(1P) JPC L=0 L=1 L=2 9.75 Below threshold 9.50 (1S) b(1S) - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 5
6
Quarkonia below open flavor thresholds
6
7
pNRQCD: 4114 MeV Lattice: 608 MeV
Spin-singlet states _ Spin-spin interaction in qq potential (11020) 11.00 (10860) 10.75 MHF |(0)|2 (4S) 2M(B) hb(3P) 10.50 b(3P) (2D) b(1S) b(3S) (3S) Mass, GeV/c2 PDG 2012 hb(2P) b(2P) BaBar + CLEO : MHF(1S) = 69.3 2.8 MeV 10.25 (1D) pNRQCD: 4114 MeV Lattice: 608 MeV (2S) b(2S) Kniehl et al., PRL92,242001(2004) Meinel, PRD82,114502(2010) 10.00 some tension hb(1P) b(1P) MHF(1P) b(2S) 9.75 center of gravity ee[(nS)] |(0)|2 0.5 ee [(2S)] ee [(1S)] MHF(2S) MHF(1S) (1S) 9.50 b(1S) MHF(1S) - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) hb(1P, 2P) MHF(2S) 0 L=0 L=1 L=2 test of long-range spin-spin contribution 7
8
Observation of hb(1P) and hb(2P)
(11020) PRL108,032001(2012) Mmiss(+-) 11.00 residuals (10860) +- hb(2P) 10.75 (4S) hb(1P) 2M(B) 10.50 b(3P) (2D) b(3S) (3S) Mass, GeV/c2 hb(2P) b(2P) 10.25 (1D) 19% (2S) b(2S) 10.00 hb(1P) b(1P) MHF(1P) = +0.8 1.1 MeV MHF(2P) = +0.5 1.2 MeV 13% Belle : consistent with zero, as expected 9.75 41% Godfrey & Rosner, PRD (2002) (1S) N[hb(1P)] = (50.4 ) 103 9.50 b(1S) –1.9 - 1 -- - N[hb(2P)] = (84.4 ) 103 JPC = 0 + -- –10 1+ (0,1,2)++ (0,1,2) hb(nP) b(mS) study b(1S) search for b(2S) L=0 L=1 L=2 8
9
Method M(b) M(hb) (5S) hb (nP) +- reconstruct b(mS)
Decay chain (5S) hb (nP) +- reconstruct b(mS) Use missing mass to identify signals MC simulation M(b) true +- true M(hb)
10
Method M(b) M(hb) (5S) hb (nP) +- reconstruct b(mS)
Decay chain (5S) hb (nP) +- reconstruct b(mS) Use missing mass to identify signals MC simulation true +- fake M(b) true +- true fake +- true M(hb)
11
Method M(b) M(hb) (5S) hb (nP) +- reconstruct b(mS)
Decay chain (5S) hb (nP) +- reconstruct b(mS) Use missing mass to identify signals MC simulation true +- fake Mmiss(+- ) Mmiss(+-) – Mmiss(+-) + M(hb) M(b) no correlation true +- true fake +- true M(hb)
12
Method Approach: M(b) M(hb) (5S) hb (nP) +- reconstruct
Decay chain (5S) hb (nP) +- reconstruct b(mS) Use missing mass to identify signals MC simulation Mmiss(+- ) Mmiss(+-) – Mmiss(+-) + M(hb) M(b) no correlation Approach: fit Mmiss(+-) spectra in Mmiss(+-) bins M(hb)
13
Method M(b) b M(hb) (5S) hb (nP) +- reconstruct b(mS)
Decay chain (5S) hb (nP) +- reconstruct b(mS) Use missing mass to identify signals MC simulation M(b) b hb yield vs. Mmiss(+-) M(hb)
14
Observation of hb(1P,2P) b(1S)
(5S)hb(nP) +– b(1S) PRL 109, (2012) MHF(1S) Belle : 57.9 2.3 MeV (11020) hb(1P) yield 3 11.00 PDG’12 : 69.3 2.8 MeV (10860) b(1S) 10.75 +- BaBar (3S) (4S) 2M(B) BaBar (2S) 10.50 b(3S) (3S) hb(2P) b(2P) hb(2P) yield b(1S) CLEO (3S) 10.25 b(2S) (2S) 10.00 hb(1P) b(1P) pNRQCD LQCD 9.75 Kniehl et al, PRL92,242001(2004) Mmiss (+-) (n) Meinel, PRD82,114502(2010) (1S) 9.50 b(1S) MHF(1S) First measurement = MeV (as expected) –3.7 –2.0 JPC = 0 + - 1 -- 1 + - (0,1,2)++ Belle result eliminates tension with theory
15
Observation of hb(1P,2P) b(1S)
PRL101, (2008) (5S)hb(nP) +– b(1S) BaBar (3S)b(1S) MHF(1S) ISR b(1S) Belle : 57.9 2.3 MeV hb(1P) yield PDG’12 : 69.3 2.8 MeV b(1S) b(1P) PRL103, (2009) BaBar (2S)b(1S) hb(2P) yield b(1S) ISR b(1S) pNRQCD LQCD Kniehl et al, PRL92,242001(2004) PRD81, (2010) Mmiss (+-) (n) Meinel, PRD82,114502(2010) First measurement = MeV (as expected) –3.7 –2.0 Belle result eliminates tension with theory CLEO (3S)
16
“look elsewhere effect”
First evidence for b(2S) PRL 109, (2012) (5S)hb(2P) +– b(2S) MHF(2S) = MeV –4.5 First measurement b(2S) 4.2 with systematics & “look elsewhere effect” pNRQCD LQCD Belle In agreement with theory Mmiss (+-) (2) (2S) = 4 8 MeV, < 90% C.L. expect 4MeV Branching fractions Expectations BF[hb(1P) b(1S) ] = 49.2 % BF[hb(2P) b(1S) ] = 22.3 % BF[hb(2P) b(2S) ] = 47.5 % 41% 13% 19% –3.3 Godfrey Rosner PRD66,014012(2002) –3.3 –7.7 c.f. BESIII BF[hc(1P) c(1S) ] = 54.38.5 % 39%
17
Charmonium table Potential models “Old” states (observed before 1980)
Y(4660) Z(4430)+ Y(4360) X(4160) Y(4260) Z(4250)+ “Old” states (observed before 1980) X(3872) Y(3915) Z(4050)+ Y(4008) DD _ X(3940) New states (last decade) New states w/ unusual properties JPC States below DD threshold are narrow (annihilation or other charmonia) _ States above DD threshold are broad ( DD, DD*, ...) _ 17
18
Charmonium table Potential models “Old” states (observed before 1980)
Y(4660) Z(4430)+ Y(4360) X(4160) Y(4260) Z(4250)+ “Old” states (observed before 1980) X(3872) Y(3915) DD* _ Z(4050)+ Y(4008) DD _ X(3940) New states (last decade) c2 2 New states w/ unusual properties JPC D-wave states all observed States below DD threshold are narrow (annihilation or other charmonia) _ States above DD threshold are broad ( DD, DD*, ...) _ Expect two more narrow states (unnatural spin-parity + below DD* threshold) _ 18
19
Evidence for 2(1D) preliminary Study B+ c1 K+ | J/ M(c1 )
X(4160) Y(4260) X(3872) Y(3915) DD* _ 4.2 w/ syst. Y(4008) DD _ X(3940) c2 2 M = 2.8 MeV = 4 6 MeV, <14 C.L. JPC D-wave states Radiative decay seen O(100keV) 19
20
Evidence for 2(1D) preliminary Study B+ c1 K+ JPC = 2– – L=2 S=1
| J/ Y(4360) M(c1 ) X(4160) Y(4260) X(3872) Y(3915) DD* _ 4.2 w/ syst. Y(4008) DD _ X(3940) 2(1D) M = 2.8 MeV = 4 6 MeV, <14 C.L. JPC C (c1) = – Radiative decay seen O(100keV) JPC = 2– – L=2 S=1 ~2/3 BF(B+ 2K+) BF(2 c1) = = ( ) 10-6 -1.0 -2.5 factorization suppression c.f. BF(B+ (2S) K+) = 20
21
Charmonium Bottomonium
Y(4660) (11020) Y(4360) 11.00 (10860) X(4160) Y(4260) X(3872) Y(3915) 10.75 Y(4008) DD _ X(3940) (4S) 2M(B) 2(1D) hb(3P) 10.50 b(3P) (2D) b(3S) (3S) hb(2P) b(2P) 10.25 (1D) S=1 S=1 S=0 S=0 (2S) b(2S) 10.00 hb(1P) b(1P) JPC L=0 L=1 L=2 9.75 Recent finding: b(2S), hb(1P,2P), b(3P) 2(1D) 9.50 (1S) b(1S) Properties of all states below open flavor thresholds are consistent with expectations - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 21
22
Quarkonia at open flavor thresholds
22
23
X(3872) 10th anniversary! 739 618 381 CP B→Xsγ Belle citation count
Phys.Rev.Lett.91, (2003) 10th anniversary!
24
production at high energy
X(3872) PDG’12 MX(3872) – (MD0 + MD*0) = ± 0.32 MeV Z(4430)+ Relative BF J/ J/ J/ D0D*0 _ 1 0.8 0.3 0.21 0.06 10 isospin violation Z(4250)+ X(4160) X(3872) Y(3915) Z(4050)+ DD _ JPC = 1++ X(3940) 2(3820) Most likely interpretation: DD* molecule with admixture of c1(2P) isospin violation production at high energy Fractions of admixtures? Bound or virtual? Dynamical model? Experimental issues: M (D0 mass uncertainty dominates) (2S) (Belle/BaBar controversy) line-shape in DD* (statistics limited) absolute BF (inelastic channels?) _ 24
25
Anomaly in hb(nP) production
(11020) PRL108,032001(2012) Mmiss(+-) 11.00 residuals (10860) +- hb(2P) 10.75 (4S) hb(1P) 2M(B) 10.50 b(3P) (2D) b(3S) (3S) Mass, GeV/c2 hb(2P) b(2P) 10.25 (1D) (2S) b(2S) 10.00 hb(1P) b(1P) spin-flip [(5S) hb(mP) +–] 9.75 1 [(5S) (nS) +–] (1S) 9.50 b(1S) expect suppression (QCD/mb)2 - 1 -- - JPC = 0 + -- 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 Mechanism of (5S) decays ? 25
26
Resonant structure of (5S) (bb) +–
_ Resonant structure of (5S) (bb) +– Belle PRL108,122001(2012) (5S) hb(1P)+- (5S) hb(2P)+- zero non-res. contribution Two peaks in all modes phsp Minimal quark content _ bbud phsp flavor-exotic states M[ hb(1P) π ] M[ hb(2P) π ] Dalitz plot analysis (5S) (1S)+- (5S) (2S)+- (5S) (3S)+- note different scales
27
(5S) (nS) +- Dalitz plots
M2(π+π-) M2(π+π-) M2(π+π-) Angular analysis favors JP=1+ S-wave S-wave (5S) Zb, Zb (nS) – no spin orientation change Spins of (5S) and (nS) can be ignored S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANR BW Flatte BW C1 + C2∙m2(ππ)
28
Fit results 180o (2S) hb(1P) = 0o
Zb Zb ’ Average over 5 channels M1 = 2.0 MeV 1 = 18.4 2.4 MeV MZb – (MB+MB*) = 2.1 MeV M2 = 1.5 MeV 2 = 2.2 MeV MZb’ – 2MB* = 1.7 MeV M(hb), GeV/c2 hb(1P) yield / 10MeV 180o (2S) hb(1P) = 0o Phase btw Zb and Zb amplitudes is 0o for (nS) 180o for hb(mP) ’ destr. interf. Resonant behavior of Zb amplitudes (intensity & phase). 28
29
flip of phase in hb amplitude
Structure of Zb JP = 1+ , IG = 1+ Bondar et al, PRD84,054010(2011) _ B B* = Proximity to thresholds favors molecule over tetraquark Zb + S-wave _ B*B* = – Zb’ not suppressed (nP) hb(mP) flip of phase in hb amplitude Assumption of molecular wave-function allows to explain all properties of Zb hb(nP) is not suppressed due to mB*–mB splitting A (hb) 1 MZb – M + i/2 – 0 MZb’ – M + i/2 If mb mB* mB and mZb’ mZb
30
Search for Zb BB* and B*B*
_ _ Search for Zb BB* and B*B* _ arXiv: e+e- (5S) B(*)B(*) _ M(B) Mmiss(B) BB* Full reconstruction of one B _ BB _ B*B* BF[ (5S) B(*)B(*) ] _ PRD81,112003(2010) Belle fb-1 significance Belle 23.6 fb-1 _ BB BB* + BB* B*B* <0.60 % at 90% C.L. (4.25 0.44 0.69) % (2.12 0.29 0.36) % (0 1.2) % (7.3 2.3) % (1.0 1.4) % _ _ _ _ 9.3 5.7 _ BFs are consistent with previous measurement
31
Observation of ZbBB* and Zb’B*B*
_ _ Observation of ZbBB* and Zb’B*B* arXiv: _ Zb’ BB* is suppressed w.r.t. B*B* despite larger PHSP _ M (BB*) Zb Molecule admixture of BB* in Zb’ is small _ 8 Zb’ ? phsp Challenging for tetraquark _ M (B*B*) Zb’ 6.8 phsp Z b properties are consistent with molecular structure
32
Evidence for a neutral Zb
(2S) e+e- (5S) (nS)00 (1S) BF[(5S)(1S)00] = (2.250.110.20) 10-3 BF[(5S)(2S)00] = (3.790.240.49) 10-3 in agreement with isospin relations M miss (0 0) Dalitz plot analysis of (1S,2S)00 w/ Zbs w/o Zb Zb(10610) (4.9 w/ syst.) Zb(10650)0 2 (2S) 00 : (1S) 00 : Zb signals not significant Yields agree with isospin expectations Confirmation that Zb is an isotriplet M [(2S)0 ]
33
Origin of structure at threshold
1. Threshold effect Chen Liu PRD84,094003(2011) Zb Zb’ B(*) B(*) (5S) (2S) B(*) _ S-wave M [(2S)π] Danilkin Orlovsky Simonov PRD85,034012(2012) 2. Coupled-channel resonance multiple re-scatterings pole Zb B(*) B(*) B(*) Zb’ + + ... (5S) B(*) _ B(*) _ B(*) _ (2S) (2S) (2S) 3. Deuteron-like molecule B(*) Ohkoda et al arxiv: ,,, exchange (5S) B(*) _ (2S) Request to theory: predictions (formulas) to fit data !
34
Quarkonia above open flavor thresholds
34
35
“Conventional” states (3770) (4040) (4160) (4415) _ _ DD, DD*, ...
Y(4660) DD, DD*, ... Y(4360) X(4160) Y(4260) X(3872) Y(3915) Y(4008) X(3940) Y(4008) Y(4260) Y(4360) Y(4660) Y(3915) “Anomalous” states J/ +- (2S) +- J/ from ISR JPC = 1– – decays to DD, DD*, ... not seen _ 2(1D) e+e- J/ ISR (4040) (4160) arxiv: c.f. ((2S) J/) 102keV ((3770) J/) 50keV typical (Y ) > 1MeV huge for charmonium ( J/ ) 1 MeV _ All states above DD threshold have anomalous properties? 35
36
Anomalies in (5S) (nS) +– transitions
(11020) Belle PRL100,112001(2008) 11.00 (10860) [(5S) (1S,2S,3S) +–] >> [(4S,3S,2S) (1S) +–] Zb + 10.75 260 – (4S) 2M(B) 10.50 2 + (3S) Mass, GeV/c2 hb(2P) 10.25 430 Rescattering of on-shell B(*)B(*) ? _ 1 (2S) b(2S) 10.00 hb(1P) 290 6 9.75 partial (keV) Simonov JETP Lett 87,147(2008) 9.50 (1S) b(1S) Meng Chao PRD77,074003(2008) - 1 -- - JPC = 0 + 1+ More transitions ? 36
37
Observation of (5S) (1D)+-
121 fb-1 PRL108,032001(2012) Mmiss(+-) residuals Seen inclusively (2.4): hb(2P) N (1D) 1/7 N (2S) [(5S) (1D) +-] 60 keV is anomalously large hb(1P) (1D) PRELIMINARY Mmiss(+-) Observed using exclusive reconstruction : (5S) (1D) +- (1S) | bJ(1P) (1D) (2S) 9 +- | BF[(5S) (1D) +- (1S) +- ] = (2.0 0.4 0.3)×10−4 reflection c.f. CLEO: BF[(3S) (1D) (1S) ] = (2.5 0.5 0.5)×10−5 more details: LaThuile 2012 37
38
Observation of (5S) (1S,2S)
121 fb-1 PRELIMINARY Mmiss(+-0) Exclusive reconstruction (2S) BF[ (5S) (1S) ] = (0.73 0.16 0.08)×10−3 BF[ (5S) (2S) ] = ( 3.8 )×10−3 [ (5S) (1S,2S) ] 40 – 200 keV anomalously large (1S) E1M2 [(5S) (nS) ] [(5S) (nS) +-] 0.16 0.04 for (1S) 0.48 0.05 for (2S) R5n = = E1E1 no strong suppression c.f. Belle R21 = (1.99 ) 10–3 –0.08 hadron loops? BaBar R41 = 0.40 0.12 Simonov, Veselov arXiv: Meng, Chao PRD78, (2008) Voloshin MPLA26,773(2011) 38
39
– Bottomonium Charmonium c +- & transitions +- transitions
Y(4660) “(5S)” +- Y(4360) +- _ Y(4260) BB (4160) (4040) (3S) Y(4008) _ hb(2P) DD (1D) (2S) (2S) hb(1P) J/ J/ (1S) _ similar [ “(5S)” (bb) +- ] 1 MeV [ /Y hadrons ] 1 MeV _ _ One-to-many (bb) vs. Many-to-one (cc). Hadron loops? c – π Hadrocharmonium? Voloshin 39
40
Z(4050) Z(4250) Also hadrocharmonium? _ DD JPC
Y(4660) Y(4360) Y(4260) Y(4008) Y(3915) X(3872) X(3940) X(4160) 2(1D) DD _ JPC Also hadrocharmonium? Charged charmonium like states – multiquark candidates produced in B Z K decays Z(4050) Belle: Z(4430) (2S) + and c1 + Within the reach of LHCb Z(4250) BaBar: no significant signals 40
41
Only (constituent) quarks so far (no valence gluons, di-quarks,..) !
Summary Many new results from B-factories, hadronic machines : Quarkonia below threshold: 2(1D), b(2S) , hb(1P) , hb(2P), b(3P) Isotriplet molecular states seen in 6 decay modes: (1S)+, (2S)+, (3S)+, hb(1P)+, hb(2P)+, BB*(B*B*) Ground states & ~low excitations – Potential models etc are OK Open flavor thresholds – new types of hadrons: meson molecules Above open flavor thresholds – anomalous transitions Zb – very rich phenomenological objects understanding of highly excited states need “unquenched” Quark Model Only (constituent) quarks so far (no valence gluons, di-quarks,..) ! 41
42
Back-up 42
43
Claim of exclusively reconstructed b(2S)
5 authors from CLEO: Dobbs, Metreveli, Seth, Tomaradze, Xiao PRL109,082001(2012) e+e- (2S) b(2S) , b(2S) 26 exclusive channels MHF(2S) b(2S) is here according to Belle Dobbs et al 2.7 MeV Belle 5σ MeV MeV –4.5 –4.5 Origin of Belle signal and Dobbs et al. signal can not be the same Dobbs et al. have no sensitivity to low values of MHF(2S)
44
Claim of exclusively reconstructed b(2S)
5 authors from CLEO: Dobbs, Metreveli, Seth, Tomaradze, Xiao PRL109,082001(2012) exp Dobbs et al. assumed exponential background FSR FSR is known to contribute power law tail e.g. (2S) K+K- n(+-) FSR 4.6 Background model is incomplete significance of 4.6 is overestimated Properties of the Dobbs et al. signal ... factor 30 LQCD pNRQCD Belle 0.6 0.9 0.8 0.7 Dobbs et al. N[(2S)b(2S)] 0.2 N[(2S) b1(1P) ] c.f. [’c(2S)] = [’c1] BESIII PRL109,042003(2012) ... does not look physical It is unlikely that the signal of Dobbs et al. is due to b(2S).
45
Branching fractions of (4040,4160)J/
preliminary Fit: (4040) and (4160) only (4040) 6.0 w/ syst. 6.5 w/ syst. < 3 ~ (4160) BF, % 1st solution: (4040) 0.10 0.17 (4160) 0.10 0.17 2nd solution: (4040) 0.15 0.26 (4160) 0.16 0.29 [(4040,4160)] = (80,103) MeV [ (4040,4160) J/ ] 1 MeV First time states exhibit anomalous coupling to (J/ hadrons). Common feature of all states above threshold ? 45
46
Calibration tolerable Energy of Shift in energy Mdata–MMC
lab.system Shift in energy Mdata–MMC 2P2S Use signals : 0 |E1–E2| E1+E2 <0.05 M /M 1P1S E E M /M = 2P1S D*0 D0 M /(MD* –MD) Shift in energy Fudge-factor 0 D* Agreement! tolerable Typical syst. uncertainty : M ~ 0.7–1.5 MeV, ~ 1.5 MeV.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.