Download presentation
Presentation is loading. Please wait.
1
Cell Physiology: Metabolism
Biology 346 General Physiology Dr. Tony Serino
2
Metabolism Refers to all of the reactions that occur in the cell
Each reactions requires a specific enzyme Energy may be released or consumed in the reactions
3
Energy Flow in Reactions
4
Metabolic Reactions (R P)
Most reactions are reversible All reactions try to proceed to a dynamic equilibrium. Therefore, one way to favor a reaction is to manipulate the amount of reactants or products present. A + B C + D
5
Metabolic Pathways A series of reactions in the body.
Most are linked with other sets, so that the products of one reaction become the reactants of the next. Two Kinds: Degradative (Catabolism) Biosynthetic (Anabolism)
6
Pathway Map of Cell Metabolism
Note: Kreb Cycle
7
Enzymes Catalyze reactions Reactants = substrates (S)
S bind to active site on E S bound non-covalently 3D structure give E specificity # of bonds formed gives affinity May use co-factors (co-enzymes) May bind other chemicals that act as modulators (change 3D shape of active site)
8
Energy flow in a reaction
Every reactions must overcome an energy barrier to begin. Energy of Activation (EA)
9
Energy Flow with Enzyme Present
Enzymes increase reaction rates by lowering the EA
10
Enzymes Lower EA Bring reactants into close proximity Produce bond strain in substrates Both of these characteristics allows the enzyme to lower the reaction’s EA
11
Control of Enzyme Function
Proteins remain functional in a narrow range of pH and temp. Radical changes in these values can cause proteins to denature; that is, change its 3D shape
12
Enzyme Control Enzyme activity can be modified by changes in both enzyme and substrate concentrations Excess substrate eventually hits a maximum or saturation point
13
Enzyme Control Other substances may bind to the enzyme and modify its behavior; either as an activator or inhibitor If the substance competes with the substrate for the active site; it is a competitive inhibitor
14
Enzyme Modulation: non-competitive inhibition and activation
Binding of a molecule to a site other than the active site may result in an enzyme conformational change that either turns the enzyme “on or off” If the modulator is bound by non-covalent forces; it is allosteric modulation (the most common type); if bound covalently, it is covalent modulation (which is more difficult to change)
15
Central Dogma
16
Protein Synthesis Overview
17
ATP cycle
18
Utilization of ATP
19
ATP Synthesis Two ways to produce ATP Substrate Phosphorylation
Oxidative Phosphorylation
20
Substrate Phosphorylation
An ATPase binds a substrate that can be stripped of a high energy phosphate to synthesize ATP
21
Oxidative Phosphorylation
High energy electrons are scavenged from the breakdown of food molecules and used to power an electron transport chain which allows the cell to synthesize ATP Uses a series of Redox reactions to power pumps Note: the PO4- is an ion of the environment and contains no extra energy
22
Co-enzymes: NADH & FADH2
Oxidized Reduced NAD+ NADH FAD+ FADH2 The co-enzymes pick up high energy electrons and transport them to where they are needed, such as, the electron transport chain.
24
Glycolysis
25
Kreb Cycle
26
Electron Transport Chain
27
Glycolysis: Overview 2 PGAL
31
Transition Reaction: Acetyl-CoA
For one molecule of glu, 2 pyruvates will be processed.
32
Kreb Cycle
33
Kreb Cycle Transition reaction For one molecule of glucose, 2 acetyl-CoAs will be processed, so the Kreb cycle will make 2 complete turns All of the carbon atoms of the sugar have now been converted to CO2 After the co-enzymes are processed, the total amount of ATP produced per turn of the wheel will be 12 ATP
34
Electron Transport Chain (Respiratory Chain)
NADH unloads its electrons at the start of the chain; yielding the maximum energy release per electron pair FADH2 unloads further down the line, thereby diminishing its energy return Oxygen is the final electron acceptor, it combines with hydrogen to form water
35
Chemiosmosis Generates a high H+ concentration in the intermembrane space
36
ATP synthase complex H+ are pushed through the channel due to their electro-chemical gradient This spins the rotor molecules which produces the energy needed to convert ADP to ATP
37
Cellular Respiration Overview
38
Aerobic vs. Anaerobic Respiration
39
Anaerobic Respiration
40
Food Processing
41
Protein Metabolism Proteins Amino Acids Amino Acids
Deamination –removes NH forming a keto-acid Transamination –transfers NH to other keto-acid Keto-acids can be fed into Kreb Cycle Amino group may form ammonia which can be converted to urea and excreted by kidney
45
Fat Metabolism Triglyceride 3 fatty acids + glycerol ( a sugar)
46
Fat Metabolism Fatty acids broken down 2 C’s at one time = Beta-oxidation of fat 8 C fatty acid would yield 62 ATP molecules ((12 * 4); -1 initial ATP used; -5 for last two carbons do not generate extra co enzymes)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.