Download presentation
Presentation is loading. Please wait.
Published byToni Mallin Modified over 10 years ago
1
Photon statistics without photon counting S. Olivares, A. R. Rossi, M. G. A. Paris, G. Zambra (UniMi) A. Andreoni, M. Bondani (UniInsubria) M. Genovese, M. Gramegna, G. Brida (IEN-To) S. Olivares, A. R. Rossi, M. G. A. Paris, G. Zambra (UniMi) A. Andreoni, M. Bondani (UniInsubria) M. Genovese, M. Gramegna, G. Brida (IEN-To)
2
Summary Why the photon distribution ? Why not photon counting ? MaxLik estimation: iterative solution Experimental verification Outlooks Why the photon distribution ? Why not photon counting ? MaxLik estimation: iterative solution Experimental verification Outlooks
3
Photon distribution Nonclassicality Channel capacity Quantum radiography Nonclassicality Channel capacity Quantum radiography
4
Photon counting Photomultipliers / Hybrid photodetectors Solid state detectors Thermal detectors Homodyne detection (Quantum Tomography) Photomultipliers / Hybrid photodetectors Solid state detectors Thermal detectors Homodyne detection (Quantum Tomography)
5
On/Off detection Multiple quantum efficiencies LINPOS problem On/Off statistics η η quantum efficiency
6
Probability distribution Random sample Joint probability of the sample Probability distribution Random sample Joint probability of the sample MaxLik estimation Maxlik estimation take the value of the parameters which maximize the likelihood of the observed data
7
Likelihood of the data set Maximization of a function of several variables (numerical, time-consuming) MaxLik Estimation of
8
Iterative solution Convergence Accuracy Robustness Convergence Accuracy Robustness
9
Iterative solution Convergence # iterations x 1000
10
Iterative solution Accuracy Robustness to fluctuations on η Coherent state
11
CW regime Weak coherent state Heralded single-photon state
12
Pulsed regime Gaussian Thermal Multithermal
13
Current developments Extension to two or more modes (IEN) Comparison with schemes involving one- photon-resolving detectors Improving the approximation (Z. Hradil & J. Rehacek, Olomouc, Czech Rep) Extension to two or more modes (IEN) Comparison with schemes involving one- photon-resolving detectors Improving the approximation (Z. Hradil & J. Rehacek, Olomouc, Czech Rep)
14
Reconstruction of the whole density matrix Reconstruction of the Wigner function (Insubria) Reconstruction of the whole density matrix Reconstruction of the Wigner function (Insubria) Outlooks References qinf.fisica.unimi.it/~paris/
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.