Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sin & Cos with Amplitude and Phase.

Similar presentations


Presentation on theme: "Sin & Cos with Amplitude and Phase."โ€” Presentation transcript:

1 Sin & Cos with Amplitude and Phase.
Trigonometric equations are applied in the world of TV / cable broadcast. Equations such as y=2 sin ๐‘ฅ is an example of such an equation.

2 Sin & Cos with Amplitude and Phase.
Trigonometric equations are applied in the world of TV / cable broadcast. Equations such as y=2 sin ๐‘ฅ is an example of such an equation. In the equation, 2 is a multiplier and called an amplitude. Amplitude describes the โ€œheightโ€ of the trigonometric function.

3 Sin & Cos with Amplitude and Phase.
Trigonometric equations are applied in the world of TV / cable broadcast. Equations such as y=2 sin ๐‘ฅ is an example of such an equation. In the equation, 2 is a multiplier and called an amplitude. Amplitude describes the โ€œheightโ€ of the trigonometric function. ๐‘ฆ=๐ด ๐‘ ๐‘–๐‘› ๐‘ฅ Letโ€™s compare to y=2 sin ๐‘ฅ on the interval [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ

4 Sin & Cos with Amplitude and Phase.
Trigonometric equations are applied in the world of TV / cable broadcast. Equations such as y=2 sin ๐‘ฅ is an example of such an equation. In the equation, 2 is a multiplier and called an amplitude. Amplitude describes the โ€œheightโ€ of the trigonometric function. ๐‘ฆ=๐ด ๐‘ ๐‘–๐‘› ๐‘ฅ Letโ€™s compare to y=2 sin ๐‘ฅ on the interval [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ 2 sin 0๐œ‹= sin ๐œ‹ 4 = 1 sin ๐œ‹ 2 = sin 3๐œ‹ 4 = sin ๐œ‹= ๐œ‹ 4 ๐œ‹ 2 3๐œ‹ 4 ๐œ‹ 5๐œ‹ 4 3๐œ‹ 2 7๐œ‹ 4 2๐œ‹ sin 5๐œ‹ 4 = -1 sin 3๐œ‹ 2 = sin 7๐œ‹ 4 = -2 sin 2๐œ‹=

5 Sin & Cos with Amplitude and Phase. ๐‘ฆ=๐ด ๐‘ ๐‘–๐‘› ๐‘ฅ
I used just basic angles and plotted my sin x curve. Letโ€™s compare to y=2 sin ๐‘ฅ on the interval [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ 2 sin 0๐œ‹= 0 sin ๐œ‹ 4 =0.7071 1 sin ๐œ‹ 2 = 1 5๐œ‹ 4 7๐œ‹ 4 sin 3๐œ‹ 4 =0.7071 sin ๐œ‹=0 ๐œ‹ 4 ๐œ‹ 2 3๐œ‹ 4 ๐œ‹ 3๐œ‹ 2 2๐œ‹ sin 5๐œ‹ 4 =โˆ’0.7071 -1 sin 3๐œ‹ 2 =โˆ’1 sin 7๐œ‹ 4 =โˆ’0.7071 -2 sin 2๐œ‹=0

6 Sin & Cos with Amplitude and Phase. ๐‘ฆ=๐ด ๐‘ ๐‘–๐‘› ๐‘ฅ
I used just basic angles and plotted my sin x curve. Now letโ€™s get our values for y=2 sin ๐‘ฅ Letโ€™s compare to y=2 sin ๐‘ฅ on the interval [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ y=2 sin ๐‘ฅ 2 sin 0๐œ‹= 0 2 sin 0๐œ‹= sin ๐œ‹ 4 =0.7071 2 sin ๐œ‹ 4 = 1 sin ๐œ‹ 2 = 1 2 sin ๐œ‹ 2 = 5๐œ‹ 4 7๐œ‹ 4 sin 3๐œ‹ 4 =0.7071 2 sin 3๐œ‹ 4 = sin ๐œ‹=0 2 sin ๐œ‹= ๐œ‹ 4 ๐œ‹ 2 3๐œ‹ 4 ๐œ‹ 3๐œ‹ 2 2๐œ‹ sin 5๐œ‹ 4 =โˆ’0.7071 2 sin 5๐œ‹ 4 = -1 sin 3๐œ‹ 2 =โˆ’1 2 sin 3๐œ‹ 2 = sin 7๐œ‹ 4 =โˆ’0.7071 2 sin 7๐œ‹ 4 = -2 sin 2๐œ‹=0 2 sin 2๐œ‹=

7 Sin & Cos with Amplitude and Phase. ๐‘ฆ=๐ด ๐‘ ๐‘–๐‘› ๐‘ฅ
I used just basic angles and plotted my sin x curve. Now letโ€™s get our values for y=2 sin ๐‘ฅ As you can see, all the values doubled ( x 2 ) Letโ€™s compare to y=2 sin ๐‘ฅ on the interval [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ y=2 sin ๐‘ฅ 2 sin 0๐œ‹= 0 2 sin 0๐œ‹=0 sin ๐œ‹ 4 =0.7071 2 sin ๐œ‹ 4 =1.414 1 sin ๐œ‹ 2 = 1 2 sin ๐œ‹ 2 =2 5๐œ‹ 4 7๐œ‹ 4 sin 3๐œ‹ 4 =0.7071 2 sin 3๐œ‹ 4 =1.414 sin ๐œ‹=0 2 sin ๐œ‹= 0 ๐œ‹ 4 ๐œ‹ 2 3๐œ‹ 4 ๐œ‹ 3๐œ‹ 2 2๐œ‹ sin 5๐œ‹ 4 =โˆ’0.7071 2 sin 5๐œ‹ 4 =โˆ’1.414 -1 sin 3๐œ‹ 2 =โˆ’1 2 sin 3๐œ‹ 2 =โˆ’1 sin 7๐œ‹ 4 =โˆ’0.7071 2 sin 7๐œ‹ 4 = โˆ’1.414 -2 sin 2๐œ‹=0 2 sin 2๐œ‹= 0

8 Sin & Cos with Amplitude and Phase.
Phase relation is seen in practical applications such as sound, electrical, and radio waves. This โ€œphase shiftโ€ adjusts the wave by sliding it either left or right a number of degrees. The waves mostly frequently shifted are sine waves. ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅยฑโˆ…

9 Sin & Cos with Amplitude and Phase.
Phase relation is seen in practical applications such as sound, electrical, and radio waves. This โ€œphase shiftโ€ adjusts the wave by sliding it either left or right a number of degrees. The waves mostly frequently shifted are sine waves. ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅยฑโˆ… Here is an example of a sine wave shifted 45โฐ.

10 Sin & Cos with Amplitude and Phase.
Phase relation is seen in practical applications such as sound, electrical, and radio waves. This โ€œphase shiftโ€ adjusts the wave by sliding it either left or right a number of degrees. The waves mostly frequently shifted are sine waves. ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅยฑโˆ… Here is an example of a sine wave shifted 45โฐ. ( the interval is [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ sin 0๐œ‹= 0 1 sin ๐œ‹ 4 =0.7071 sin ๐œ‹ 2 = 1 5๐œ‹ 4 7๐œ‹ 4 sin 3๐œ‹ 4 =0.7071 sin ๐œ‹=0 ๐œ‹ 4 ๐œ‹ 2 3๐œ‹ 4 ๐œ‹ 3๐œ‹ 2 2๐œ‹ sin 5๐œ‹ 4 =โˆ’0.7071 -1 sin 3๐œ‹ 2 =โˆ’1 sin 7๐œ‹ 4 =โˆ’0.7071 sin 2๐œ‹=0

11 Sin & Cos with Amplitude and Phase.
Phase relation is seen in practical applications such as sound, electrical, and radio waves. This โ€œphase shiftโ€ adjusts the wave by sliding it either left or right a number of degrees. The waves mostly frequently shifted are sine waves. ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅยฑโˆ… Here is an example of a sine wave shifted 45โฐ. ( the interval is [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ+45ยฐ sin 0๐œ‹= 0 sin 0+45ยฐ =0.7071 1 sin ๐œ‹ 4 =0.7071 sin ๐œ‹ 4 +45ยฐ =1 sin ๐œ‹ 2 = 1 5๐œ‹ 4 7๐œ‹ 4 sin 3๐œ‹ 4 =0.7071 sin ๐œ‹ 2 +45ยฐ =0.7071 sin ๐œ‹=0 ๐œ‹ 4 ๐œ‹ 2 3๐œ‹ 4 ๐œ‹ 3๐œ‹ 2 2๐œ‹ sin 5๐œ‹ 4 =โˆ’0.7071 sin 3๐œ‹ 4 +45ยฐ =0 -1 sin 3๐œ‹ 2 =โˆ’1 sin 7๐œ‹ 4 =โˆ’0.7071 โ‹ฎ sin 2๐œ‹=0 And so on

12 Sin & Cos with Amplitude and Phase.
Phase relation is seen in practical applications such as sound, electrical, and radio waves. This โ€œphase shiftโ€ adjusts the wave by sliding it either left or right a number of degrees. The waves mostly frequently shifted are sine waves. As you can see, we either add or subtract the angle. ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅยฑโˆ… Here is an example of a sine wave shifted 45โฐ. ( the interval is [ 0 , 2ฯ€ ] ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ฆ=๐‘ ๐‘–๐‘› ๐‘ฅ+45ยฐ sin 0๐œ‹= 0 sin 0+45ยฐ =0.7071 1 sin ๐œ‹ 4 =0.7071 sin ๐œ‹ 4 +45ยฐ =1 sin ๐œ‹ 2 = 1 5๐œ‹ 4 7๐œ‹ 4 sin 3๐œ‹ 4 =0.7071 sin ๐œ‹ 2 +45ยฐ =0.7071 sin ๐œ‹=0 ๐œ‹ 4 ๐œ‹ 2 3๐œ‹ 4 ๐œ‹ 3๐œ‹ 2 2๐œ‹ sin 5๐œ‹ 4 =โˆ’0.7071 sin 3๐œ‹ 4 +45ยฐ =0 -1 sin 3๐œ‹ 2 =โˆ’1 sin 7๐œ‹ 4 =โˆ’0.7071 โ‹ฎ sin 2๐œ‹=0 And so on


Download ppt "Sin & Cos with Amplitude and Phase."

Similar presentations


Ads by Google