Download presentation
Presentation is loading. Please wait.
1
Quantum Numbers of Charmed Baryons
Hai-Yang Cheng (鄭海揚) Academia Sinica, Taipei c states c states c(’) states c states UCAS, June 21, 2017
2
Spectroscopy In SU(3) representation, diquark = 33 = 3+6
3: c+, c+, c all decay weakly 6: c0, ’+c, ’0c, c++,+,0 only c0 decays weakly c*0, *+c, *0c, c*++,+,0 (JP = 3/2+) Sl= Sl=1 Many excited states observed: Orbitally excited p-wave states: Ll=1 e.g. c(2595), c(2625), c(2790), c(2815),… etc. (CLEO) Positive parity excitations: Ll=2,1,0 e.g. c(2880) with JP =5/2+ (Belle ’06) 2
3
Charmed baryon states c c c c ’c(3123) c(3080) c(3055)
3/2- ’c(2930) c(2880) 5/2+ c(2860) 3/2+ c(2815) 3/2- (1P) c(2800) c(2790) 1/2- (1P) c(2765) c(2770) 3/2+ c(2765) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c
4
03/14/2017 c(2695) & c* don’t have strong decays
3050 3066 3000 3090 3119 03/14/2017 c(2695) & c* don’t have strong decays 5 narrow excited c states decaying into c(’)K
5
Agaev, Azizi, Sundu [ ] H. Chen, Mao, W. Chen, Hosaka, Liu, Zhu [ ] Karliner, Rosner [ ] Yang, Ping [ ] pentaquark K. Wang, Xiao, Zhong, Zhao [ ] W. Wang, R. Zhu [ ] Padmanath, Mathur [ ] Cheng, Chiang [ ] Huang, Ping, F. Wang [ ] pentaquark Z.G. Wang [ ] B. Chen, Liu [ ] Z. Zhao, Ye, Zhang [ ] Aliev, Bilmis, Savci [ ] Kim, Polyakov, Praszalowicz [ ] Agaev, Azizi, Sundu [ ] An, H. Chen [ ] pentaquark
6
Orbitally excited charmed baryon states
L½+L¸ = Ll (not L½+L¸= Ll !) Two possible p-wave states (L+L=1): state L½=1, L¸=0; antisymmetric under q1q2 state L½=0, L¸=1; symmetric under q1q2 Jl = Sl+Ll, J = Sc+Jl In HQ limit, Jl & Sc are separately conserved Seven lowest-lying p-wave c states denoted by symmetric antisymmetric (denoted by a tilde)
7
Assume Sl=1 (axial-vector diquark) for sextet, we have 5 P-wave
c states. Many have assumed that the observed 5 narrow c baryons can be assigned to 5 P-wave states. We argue that it cannot be the case. In the presence of spin-orbital interaction Sc L & tensor interaction, states with same J but different Jl will mix together Chen, Liu
8
Masses in MeV nL, JP Ebert Shah B. Chen T.W. Chiu Agaev Expt 1S,1/2+ 2698 2695 2696 269528 2685123 2695.22.0 2S,1/2+ 3088 3100 3185 3075142 (3090) 1S,3/2+ 2768 2767 2764 278125 276989 2765.92.0 2S,3/2+ 3123 3126 3226 3119108 (3119) (1P,1/2-)l 2966 3011 2975 301545 2990129 (3000) (1P,1/2-)h 3055 3028 3063 (1P,3/2-)l 3029 2976 3066 (1P,3/2-)h 3054 2993 3120 3056103 (3050) 1P, 5/2- 3051 2947 3057 (3066) JP State Lattice PDG 0+ Ds0*(2317) 2317155 2317.70.6 1’+ D’s1(2460) 2463139 2459.60.6 1+ Ds1(2536) 2536124 0.06 We take relativistic quark model results of Ebert, Faustov, Galkin (’11) as a benchmark. Yu-Chih Chen, Ting-Wai Chiu (’17) based on Nf =2+1+1 optimal domain wall fermion with m =280 MeV
9
Agaev H. Chen Karliner (i) (ii) Padmanath K. Wang W. Wang c(3000)
1/2- 1/ /2- c(3050) 3/2- c(3066) 1/2+ 1/2+ or 1/2- 3/ /2- c(3090) 3/ /2+ 5/2- c(3119) 3/2+ 5/ /2+ 1/2+ or 3/2+ Cheng Huang Z. Wang Zhang B. Chen Aliev c(3000) 1/2- 1/2+ or 3/2+ c(3050) 3/2- 5/2+ or 7/2+ 5/2- c(3066) 3/2- or 5/2- c(3090) 1/2+ c(3119) 3/2+
10
An ideal place for testing heavy quark symmetry and chiral symmetry: heavy hadron chiral perturbation theory (HHChPT) Yan, Cheng, Cheung, Lin, Lin, Yu; Wise; Burdman, Donoghue (’92) Strong decays of S-wave charmed baryons are governed by two couplings g1 & g2. While info on g1 is absent due to the lack of c*→ c , g2 can be fixed by the measured rate of c++ c++
11
Isospin relation c00 = ½ c+- adapted by PDG is strongly violated
s-wave (d-wave) transitions between P-wave and S-wave baryons are described by six couplings h2,…,h7 (eight couplings h8,…,h15) Pirjol, Yan (’97) In principle, h2 can be determined from c(2593)c. However, m(c++) + m(-) = MeV, m(c0)+m(+) = MeV, thus strong decays of c(2593) are very close to threshold and very sensitive to the pion mass difference, m() – m(0) = 4.6 MeV important threshold effects on c(2593) mass and coupling Isospin relation c00 = ½ c+- adapted by PDG is strongly violated Blechman, Falk, Pirjol, Yelton (’03) Previous fit h2 = Chua, HYC (’06) CDF (’11) has measured decays of c(2593) to c+- and obtained m[c(2593)] = 0.28 MeV, h2 = 0.600.07
12
Strong decays of p-wave charmed baryons
h8=h10 h10 8.91.0 10.01.1 h2 = 0.600.07, h10 ( )10-3 MeV-1 (c00) 4.5 (c+- ) Predicted too large rates for c(2790)0 & c(2815)+ 12
13
P-wave c states decay into ¥cK or ¥’cK in s- or d-wave transition
Using quark model relation h3=2 h2 & assuming mass 3000 MeV ¡ (c0)= MeV for h2 = 0.437 811 MeV for h2 = 0.60 1400 MeV by Zhao, Ye, Zhang 420 MeV by H.X. Chen et al. using QCD sum rules 35 MeV by B. Chen, Liu using Eichten, Hill, Quigg decay formula 32 MeV by Wang et al. based on chiral quark model
14
The other state (1P,1/2-)h must be too broad to be seen!
With width of 410 MeV for c0 and the data of 4.5 0.7 MeV for c(3000), the mixing angle is constrained to be 96o or 84o (111o by B. Chen & Liu, 24o or 47o by K. Wang et al.) c1(1/2-) is prohibited to decay into cK in HQ limit The other state (1P,1/2-)h must be too broad to be seen! Using h10=( )10-3 extracted from measured width of Sc(2800), we obtain Expt ¡(c(3050))= sin2µ2( ) MeV, (0.80.20.1) MeV ¡(c(3066))= ( ) MeV, (3.50.40.2) MeV sin2 ¼ 160o, predicted width for c(3066) is too large by a factor of 4
15
The state (1P,1/2-)h is too broad to be seen!
Agaev H. Chen Karliner (i) (ii) Padmanath K. Wang W. Wang c(3000) 1/2- 1/ /2- c(3050) 3/2- c(3066) 1/2+ 1/2+ or 1/2- 3/ /2- c(3090) 3/ /2+ 5/2- c(3119) 3/2+ 5/ /2+ 1/2+ or 3/2+ Cheng Huang Z. Wang Zhang B. Chen Aliev c(3000) 1/2- 1/2+ or 3/2+ c(3050) 3/2- 5/2+ or 7/2+ 5/2- c(3066) 3/2- or 5/2- c(3090) 1/2+ c(3119) 3/2+
16
Decay widths in MeV LHCb Agaev K. Wang B. Chen Zhang Cheng c(3000)
4.5 0.7 4.71.2 constraint on 1 5.0 constraint on 1 c(3050) 0.80.2 0.60.2 0.94 2.7 0.2 on 2 c(3066) 3.50.4 6.41.7 4.96 3.3 8.5 c(3090) 8.71.3 9.53 11.5 15.1 c(3119) 1.10.9 1.90.6 1.15 0.73 1.0
17
Regge trajectories in (JP, M2) plane: J = M2 + 0,
in (nr, M2) plane: nr= M2+0 natural parity (P=(-1)J-1/2): /2+, 3/2-,… unnatural parity (P=(-1)J+1/2): 1/2-, 3/2+, 5/2-,… It is important to consider both spectroscopy & decay widths.
18
Charmed baryon states c c c c ’c(3123) c(3119) 3/2+(2S) c(3090)
5/2- (1P) c(3055) c(3050) 3/2- (1P) c(3000) 1/2- (1P) ’c(2970) c(2940) 3/2- ’c(2930) c(2880) 5/2+ c(2860) 3/2+ c(2815) 3/2- (1P) c(2800) c(2790) 1/2- (1P) c(2765) c(2770) 3/2+ c(2765) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c
19
Excited c states c(2595), c(2625) → c1(1/2-,3/2-) doublet: J = Jl 1/2 c1(1/2-) [c]S, c1(3/2-) [c]P, [c]D ⇒ c(2625) with < 0.97 MeV is narrower than c(2595) with = 2.60.6 MeV c(2765): radial excitation (2S) JP = ½- (Ebert, Faustov, Galkin ’07) even-parity orbital excitation ½+ (QM, Capstick, Isgur ‘86) c(2940): its spin-parity assignment is quite diverse radial excitation (2P) of c(2595) with JP= ½- (Ebert et al.) predicted mass too large by ~ 50 MeV a D*0p molecular ½- state with binding energy 5 MeV as m(D*0)+m(p)=2945 MeV (X.G. He, X.Q. Li, X. Liu, X.Q. Zeng, ’07) or 1/2+,3/2+, 5/2- suggested by others or c(2765)
20
c(2880): first positive parity excited charmed baryon
Angular analysis of c(2880)→ c by Belle (’06) ⇒ J=5/2 is preferred Candidates for spin-5/2 states: HQS ⇒ parity assignment for c(2880) JP=5/2- is disfavored However, c2(5/2+) can decay into c* in a P-wave; prediction of R is not robust robust prediction c(2880) could be an admixture of Chua, HYC (’06)
21
Remarks: Based on the diquark idea, JP[c(2880)] = 5/2+ is predicted Wilczek and Selem (’06); Ebert, Faustov, Galkin (’07) Peking group (Zhu et al., hep-ph/ ) has studied the strong decays of charmed baryons using 3P0 model ⇒ Since c(2880) decays into D0p, it cannot be a radial excitation ⇒ c2(5/2+), ’c2(5/2+), ’’c2(5/2+) & c2(5/2+) all ruled out as they don’t decay into D0p in 3P0 model. Moreover, too large ratio of c*/c for the first three & too large width ( 137 MeV) for the last one ⇒ c(2880) is a pure state Some issues with ’’c3(5/2+) : 1. QM m[c2(5/2+)] 2910MeV, and ’’c3(5/2+) is even heavier 2. The predicted width 28.3 MeV is larger than the measured one [c(2880)] = 5.81.1 MeV 22
22
c(2860): another D-wave excited state
Existence of a new 3/2+ state was noticed even before LHCb experiment B. Chen, Wei, Liu, Matsuki (’16) Lu, Dong, Liu, Matsuki (’16) B. Chen, Liu, Zhang (’17) c(2860) observed by LHCb in D0p amplitude in b D0p- decay. It has JP = 3/2+. M= MeV = MeV
23
c(2940): JP = 3/2- or 1/2- ? LHCb (’17) studied spin & parity of ¤c(2940) and found JP= 3/2-. However, its Regge line is not parallel to other two Regge trajectories; ¤c(3005) predicted by quark-diquark model fits better. We suggest that ¤c(2940) is most likely an 1/2-(2P) state LHCb: “The most likely spin-parity assignment for ¤c(2940) is JP=3/2- but the other solutions with spin 1/2 to 7/2 cannot be excluded.”
24
Charmed baryon states c c c c ’c(3123) c(3119) 3/2+(2S) c(3090)
5/2- (1P) c(3055) c(3050) 3/2- (1P) c(3000) 1/2- (1P) ’c(2970) c(2940) 1/2- (2P) ’c(2930) c(2880) 5/2+ (1D) c(2860) 3/2+ (1D) c(2815) 3/2- (1P) c(2800) c(2790) 1/2- (1P) c(2765) 1/2+ (2S) c(2770) 3/2+ c(2765) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c 24
25
Antitriplet states
26
’c baryons A missing ’c state with JP= 5/2- & mass ~ 2890 MeV. We assign it to ’c(2921) predicted by Ebert et al ’c(2930) & ’c(2921) form a P-wave doublet ’c2 (3/2-, 5/2-) ’c(2930) cK, c, ’cK HHChPT (’c(2930))= ( ) MeV which deviates from measured 3613 MeV by 2.1. The QM relation h112= 2h102 could be broken.
28
c baryons c(2800) was the only excited state found after the ground states c(2455) & c(2520). It decays into c+ with width ~ 70 MeV Since c1 c in heavy quark limit as c1→[c]P . c(2800) is assigned to c0(1/2-) or c2 (3/2-, 5/2-). (c0++c++) 425 MeV for h2=0.437 If c0(1/2-) is identified with c(2800), mixing angle > 66o; otherwise, c(2800) should have JP =3/2-.
29
29 ?? 3/2- 5/2+ c(3080) c(2980) c(2940) c(2880) c(2815) c(2800)
30
Sextet states
31
X.G. He et al. (’07), Y.B. Dong et al. (’14) c(2800) DN
A few more remarks: Strong decay modes: heavy baryon + light meson(s): c, c, c,… heavy meson + light baryon: D0p, D,… Molecule picture: c(2940)+ D*0p X.G. He et al. (’07), Y.B. Dong et al. (’14) c(2800) DN Y.B. Dong et al. (’10) c(2970) D m(D0)+m() = MeV > m[c(2970)0] = 0.8 MeV
32
Charmed baryon states c c c c ’c(3123) 7/2+ (1D) c(3119)
5/2+ (1D) c(3066) 5/2- (1P) c(3055) 3/2+ (1D) c(3050) 3/2- (1P) c(3000) 1/2- (1P) ’c(2970) 1/2+ (2S) c(2940) 1/2- (2P) ’c(2930) 3/2- (1P) c(2880) 5/2+ (1D) c(2860) 3/2+ (1D) c(2815) 3/2- (1P) c(2800) 3/2- (1P) c(2790) 1/2- (1P) c(2765) 1/2+ (2S) c(2770) 3/2+ c(2765) 3/2- (1P) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c
33
Conclusions If (1P,1/2-)l is identified with c(3000), the other state (1P,1/2-)h will be too broad to be seen! c(2940) is most likely an 1/2-(2P) state. Search for c baryon with mass ~ 3005 MeV and JP =3/2-. Regge trajectories fit nicely to c & c states; their mass differences lies between 180 ~200 MeV.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.