Presentation is loading. Please wait.

Presentation is loading. Please wait.

ივანე ჯავახიშვილის სახელობის

Similar presentations


Presentation on theme: "ივანე ჯავახიშვილის სახელობის"— Presentation transcript:

1 ივანე ჯავახიშვილის სახელობის
თბილისის სახელმწიფო უნივერსიტეტი ლექცია 9

2 Shock Waves

3 Water Waves Small amplitude waves Large amplitude waves

4 Shock Development Wave front steepening Transverse waves
Longitudinal waves

5 Jumps Discontinuous solutions obeying conservation laws
Jumps in (P, Rho, V, T); Continuous (E,M)

6 Rankine-Hugoniot Equation
1D Euler equations:

7 Rankine-Hugoniot Equation
Jump conditions:

8 3D Euler equation in the conservative form:
3D Shocks 3D Euler equation in the conservative form:

9 Shock Consequences Viscous Heating Bow shock produced
by a neutron star Supernova envelope Supernova remnant

10 HD Linear Spectrum Fourier Analysis: ( V, P, r ) ~ exp(i k r – i w t)
Dispersion Equation: w2 (w2 - Cs2 k2)=0 Solutions: Vortices: w2 = 0 Sound waves: w2 = Cs2 k2

11 HD Discontinuities Sound waves -> Shocks
(P1,r1,Vn1) -> (P2,r2,Vn2) ; Vt1=Vt2 Vortex -> Contact Discontinuity Vt1 -> Vt2 ; (P1, r1,Vn1)= (P2,r2,Vn2) Vt Vn

12 MHD modes - Fast magnetosonic waves; - Slow magnetosonic waves;
- Alfven waves; - Fast shocks; - Slow shocks; - Contact shocks;

13 MHD shocks

14 Riemann Shock Tube Problem
1D: Shock tube problem Method of characteristics:

15 Riemann Shock Tube Problem
Shock wave Rarefaction wave

16 Riemann Problem Shocks in Euler equations

17 Godunov Method Godunov 1959 Grid: Cell interface

18 Godunov scheme Find cell interface jumps ¯ Solve Riemann Problem
(for every cell) Find cell center values (conservative interpolation) integration step

19 Riemann stepping

20 Interpolation

21 Conservative Interpolation
Rho = Rho(P,S) Rho<0

22

23 Approximations Riemann Solver: Interpolation
- Linear Riemann solver (ROE) Fast, medium accuracy - Harten-Laxvan-Leer solver (HLL) Problems with contact discontinuities - Two-Shock Rieman Solver Problems with entropy waves Interpolation Linear (numerical stability) Parabolic (ppm) High order

24 Riemann Solvers Linear Riemann solver (Roe, 1981)
Formulate approximate linear problem d/dt Ut + A(UL,UR) d/dx U = 0

25 Interpolations Linear (numerical stability) Parabolic (ppm) High order

26 +/- + Best accuracy + Shock capturing
+ study of the Heating, viscosity, … Slow Turbulence Complicated

27 end


Download ppt "ივანე ჯავახიშვილის სახელობის"

Similar presentations


Ads by Google