Download presentation
Presentation is loading. Please wait.
Published byJozef Novotný Modified over 6 years ago
1
Big Bang Nucleosynthesis: Theory vs. Observation
TASI 2009 Michael S. Turner 4 June 2009 Michael S Turner
2
Michael S Turner
3
Michael S Turner
4
0.07 MeV 0.2 MeV 0.01 MeV 10 MeV 1 MeV D leads NSE, n/p~1/6
Thermal Equilibrium BBN Michael S Turner
5
BBN Reaction Network: the big 12
Michael S Turner
6
He-4 Prediction (95%): n ↔ p
ΔY = ± (τn) ± (th) ? ΔY = ± Δτn/sec τ(n) = ± 0.8 sec (±0.1%) …but, Serebrov (2005): ± 0.8 sec (-0.8% or -6.5 σ)??##!! Michael S Turner
7
D/H Prediction (95%): ±8% d(d,n)He-3 and d(p,γ)He-3 Michael S Turner
8
p(n,γ)d, He-3(α,γ)Be-7, d(p,γ)He-3, d(d,n)He-3
Li-7 Prediction (95%): ±25% p(n,γ)d, He-3(α,γ)Be-7, d(p,γ)He-3, d(d,n)He-3 Michael S Turner
9
Sharp contrast to stellar models
Reaction Cross Sections are measured where they are needed – no need to extrapolate. Sharp contrast to stellar models Michael S Turner
10
BBN Predictions (95% cl) Deuterium: baryometer!
He-4: go/no-go test of big bang Li-7: consistency test; stellar probe? He-3: probe of chemical evolution Michael S Turner
11
Light Element Abundances D, He-4 and Li-7
Deuterium: stars only destroy D – need pristine samples of the Universe He-4: MS stars make He-4 – need old, metal poor stars Li-7: also made by cosmic rays, destroyed by stars, He-3: made and destroyed by stars, learn more about chemical evolution! Michael S Turner
12
Michael S Turner
13
Detecting Deuterium Burles/Tytler, ApJ 499, 699 (1998)
Michael S Turner
14
O’Meara et al: 6 Deuterium Systems
D/H = 2.8 ± 0.3 x 10-5 BBN (Deuterium) Ωbh2 = ± (D) ± (th) YP = ± (D) ± (th) ± (τn) Li-7/H = 4.3 ± 0.5 x 10-10 -0.002? Michael S Turner
15
Precision Cosmology Indeed!
CMB (first to second peak) Ωbh2 = ± vs. BBN (Deuterium) Ωbh2 = ± ~5% agreement Ωb = ± 0.002 h = H0/100 km/s/Mpc ~ 0.7 Michael S Turner
16
He-4: 0.24x, Struggling for the 3rd Sig Fig
YP = ± (D) ± (th) ± (τn) ? Michael S Turner
17
He-4: 0.24x, Struggling for the 3rd Sig Fig
YP = ± (D) ± (th) ± (τn) ? Biggest issue: control of systematic error (see Peimbert, arXiv: ) State of the art, based upon extragalactic HII regions, Peimbert et al, ApJ 666, 636 (2007): YP = ± 0.003 Concordance with D/BBN prediction Michael S Turner
18
Li-7: Not as simple as once thought
Li-7/H (D/H) = 4.3 ± 0.5 x 10-10 Spite plateau: Li-7/H = 1.3 ± 0.3 x 10-10 Factor of 3 discrepancy (for ~10 years)! Possible explanation: Korn et al, Nature 442, 657 (2006): astration by gravitational settling Inferred value by Korn et al : (3.5 ± 0.8) x 10-10 Michael S Turner
19
Selected BBN References
Recent reviews Schramm/Turner, RMP 70, 303 (1998) Steigman, ARNPS 57, 463 (2007) Predicted abundances and uncertainties Nollett/Burles, PRD 61, (2000) Burles/Nollett/Turner, ApJ 552, L1 (2001) Lopez/Turner, PRD 59, (1999) Cyburt, PRD 70, (2004) Serpico, JCAP 0412 (2004) 010 Serebrov et al, PLB 605, 72 (2005) Deuterium O’Meara et al, ApJ 649, L61 (2006) Michael S Turner
20
Mapping depends upon cosmological parameters (good news!)
CMB anisotropy is a non-trivial map of density inhomogeneity to temperature fluctuations: Mapping depends upon cosmological parameters (good news!) ΩMh2 Michael S Turner
21
Relativistic Degrees of Freedom
All SM Particles Quark/Hadron γ/neutrinos e± pairs Michael S Turner
22
Neutrino Counting BBN (pre-LEP): Nν < 4
Lab (LEP): Nν = ± 0.012 BBN: Nν < 3.2 (95%) CMB: Nν = 4.4 ± 1.5 Michael S Turner
23
BBN: GR Independent Quenched Reactor Carroll/Kaplinghat, PRD 65, 063507 (2002)
Michael S Turner
24
“Precision Cosmology” with SDSS + WMAP: concordance model
Standard Hot Big Bang of the 1970s Flat, accelerating Universe Atoms, exotic dark matter & dark energy Consistent with inflation Precision set of cosmological parameters Ω0 = ± (uncurved) ΩM = 0.28 ± 0.013 ΩB = ± 0.002 ΩΛ = 0.72 ± 0.02 H0 = 70 ± 1.3 km/s/Mpc t0 = ± 0.12 Gyr Nν = 4.4 ± 1.5 Consistent with all data, laboratory and cosmological! Michael S Turner
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.