Download presentation
Presentation is loading. Please wait.
Published byLéna Edit Nagy Modified over 6 years ago
1
Large Eddy Simulation of the flow past a square cylinder
J. S. Ochoa, N. Fueyo Fluid Mechanics Group University of Zaragoza Spain
2
Contents Aim Turbulence Modelling Case considered Modelling
Numerical details Implementation in PHOENICS Results Conclusions
3
Aim
4
Turbulence modelling Simulation of turbulent flows LES: Filtering
Reynolds Averaged Navier-Stokes equations Large Eddy Simulation Direct Numerical Simulation LES: Filtering Simulated Modellled
5
Case considered Experiment of Lyn & Rodi Square rod in water flow
Inlet U y Outlet H x Flow parameters Square cylinder side Inlet velocity Reynolds number Channel width Channel height Flow H = 40 mm U = 535 mm/s Re = UD/n = 21400 W = 400 mm H = 560 mm Water
6
Modelling
7
Equations Governing equations Filtered equations Continuity Momentum
8
Closure (Smagorinsky)
Sub-grid Reynolds stresses Turbulent viscosity Turbulence generation function Smagorinsky constant YPLS Filter size Constant
9
Numerical details
10
Domain Dimensions H = 40 mm Flow Inlet Outlet H 15H 14H 4.5H 4H y z x
11
Grid 3D grid:120x102x20 y z x x z y z
12
Discretisation details
Convective term Temporal term Timestep calculation using CFL limit as guidance Van Leer scheme Implicit 3rd order Adam-Moulton scheme Explicit 2nd order Adam-Bashforth scheme CFL Condition
13
Solving Diferential equations solved Auxiliary variables
Continuity (Pressure) Momentum (Velocities) Scalar marker f Auxiliary variables Density Viscosity Eddy-viscosity (blue) (red)
14
Boundary conditions Flow Square-cylinder walls Simmetry wall
No-slip condition Logarithmic functions for filtered velocity Simmetry wall (Free-slip) Outflow (fixed pressure) Velocities Mass flux Simmetry wall (Free-slip)
15
Calculation of integral parameters
Strouhal number f – vortex-shedding frequency Drag & lift coefficients
16
Implementation in PHOENICS, 1
Time and spatial definitions GROUND User Module Q1 file Major PIL settings Time CFL Condition Group 2. STEADY=T TLAST=GRND Domain Groups 3,4 and 5. GRDPWR(X,.. Y High order time scheme Z Adam-Moulton Scheme Common formulation of PHOENICS Spatial discretisation Group 8. SCHEME(VANL1,U1,V1,W1) Sources added Adam-Bashforth Scheme Time discretisation Group 13. Common formulation of PHOENICS PATCH(TDIS,CELL,... COVAL(TDIS,U1,FIXFLU,GRND) V1 Sources added W1
17
Implementation in PHOENICS, 2
Properties and LES model GROUND User Module Q1 file Major PIL settings Variables solved P1,U1,V1,W1,MIXF Group 8. Smagorinsky model Variables stored RHO1,CON1E,CON1N,CON1H YPLS GENK=T Velocity gradients, GEN1 Turbulence model Group 9. ENUT=GRND Dump data Integral parameters Switching Special grounds RG( ),IG( ),LG( )
18
Computing Parallel cluster
Boadicea: Beowulf-Oriented Architecture for Distributed, Intensive Computing in Engineering Applications Installed at Fluid Mechanics Group (University of Zaragoza, Spain) 66 CPU’s (33 dual nodes) Pentium III, 550 MHz 256 Mb memory/node 10Gb disk space/node Linux PHOENICS V3.5
19
Results 2D analysis 3D simulation
20
2D: Influences Van Leer scheme
Sampling Point 2H Vertical velocity V1 Van Leer No scheme V1 (m/s) t (s)
21
2D: Influences of Adam-Moulton scheme
Sampling Point 2H Vertical velocity V1 Adam Moulton No scheme V1 (m/s) t (s)
22
2D: Influences of Smagorisnky model
Sampling Point 2H Vertical velocity V1 Smagorinsky No model V1 (m/s) Combined effect t (s)
23
2D: Combined effect Vertical velocity V1 Smagorinsky model
Sampling Point 2H Vertical velocity V1 All models and schemes No model V1 (m/s) Smagorinsky model Combined effect t (s)
24
2D: Grid influence Mean axial velocity along the centreline 120x102
Uaxial (m/s) 120x84 grid 240x168 grid 360x252 grid 120x102 grid Domain length H
25
Animation of results Mixture-fraction contours
26
3D Results Integral parameters Work: Label St Numerical data:
Verstappen and Veldman [23] GRO 0.005 1.45 2.09 0.178 0.133 Porquie et. al. [13] - Simulation 1 UK1 -0.02 1.01 2.2 0.14 0.13 - Simulation 2 UK2 -0.04 1.12 2.3 - Simulation 3 UK3 -0.05 1.02 2.23 Murakami et. Al. [29] NT 1.39 2.05 0.12 0.131 Wang and Vanka [4] UOI 0.04 1.29 2.03 0.18 Nozawa and Tamura [10] TIT 0.0093 2.62 0.23 Kawashima and Kawamura [14] ST2 0.01 1.26 2.72 0.28 0.16 ST5 0.009 1.38 2.78 0.161 Experimental data: Lyn et. al. [2] [3] EXP - 2.1 0.132 This work S8A 0.03 1.4 2.01 0.22 0.139
27
3D: Comparison among data, 1
Experimental and this work data Uaxial (m/s) Domain length H
28
3D: Comparison among data, 2
Numerical, experimental and this work data Uaxial (m/s) Domain length H
29
3D: Streamlines Comparison between experimental and numerical streamlines Experimental This work
30
3D: Iso-vorticity contours
Streamwise Vorticity Vorticity Spanwise Vorticity
31
3D: Turbulence viscosity (ENUT)
Streamwise ENUT ENUT
32
3D: Comparison between LES & RANS, 1
Sampling Point 2H Vertical velocity V1 LES K-epsilon Uaxial (m/s) t (s)
33
3D: Comparison between LES & RANS, 2
Mean axial velocity on the center plane Uaxial (m/s) Domain length H LES LES K-epsilon
34
Animation: mixf
35
Animation: spanwise vorticity
36
Speedup Domain split along z direction Grid 120x102x20 1 processor
Ideal This work Speedup Processors used (n) Domain split along z direction Grid 120x102x20 1 processor 24 min/dt 30 sweeps/dt (implicit time) 12 processors 3 min/dt Computing time: approx 11 hr (on 12 processors)
37
Conclusions LES implemented to PHOENICS
Agreement with both numerical and experimental data High order schemes increase accuracy Flow well predicted Superiority of LES over RANS Reasonable time using parallel PHOENICS v3.5
38
Further work Large Eddy Simulation of Turbulent flames
39
End of presentation Thank you
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.