Download presentation
Presentation is loading. Please wait.
1
Chapter 8 Chemical Bonding
2
Na Cl + 1s22s22p63s1 1s22s22p63s23p5 Na+ Cl– + 1s22s22p6
3
Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+
4
Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+ Na+ Cl–
5
Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+ Cl– Na+ Na+ Cl– =
6
Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+ Cl– Cl– Na+ Na+ = Cl– = Na+
7
Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional strength directly proportional to charges of ions and inversely proportional to distance between ion centers Na+
8
E Q c a d E = ionic bond strength Qc = charge on cation Qa = charge on anion (absolute value) d = distance between centers of ions
9
E Q c a d NaCl Na Cl–
10
E Q c a d NaCl Na Cl– CaCl Ca Cl–
11
E Q c a d NaCl Na Cl– CaCl Ca Cl– CaS Ca Cl–
12
E Q c a d NaCl Na Cl– CaCl Ca Cl– CaS Ca S–2 Al2S Al S2–
13
E Q c a d d Na+ F–
14
E Q c a d d d Cl– Na+ F– Na+
15
E Q c a d d d Cl– Na+ F– Na+ d Br– Na+
16
E Q c a d d d Cl– Na+ F– Na+ d d I– Br– Na+ Na+
17
Lattice Energy energy required to separate 1 mol of an ionic compound into its gaseous ions eg MgF2(s) Mg2+(g) + 2F–(g) Hlattice = 2910 kJ/mol for NaF, Hlattice = kJ/mol for KF, Hlattice = kJ/mol WHY???
18
Ionic Bond Formation Born Haber Cycle
Breaks formation of an ionic compound from its elements into a series of theoretical steps and considers the energetics of each Example: consider formation of NaCl Na(s) + 1/2Cl2(g) NaCl(s) H° = –410.9 kJ
19
725.4 E (kJ) 376.4 229.4 107.7 Na(s) + 1/2Cl2(g) –410.9
20
E (kJ) Na(g) + 1/2Cl2(g) Hsub, Na Na(s) + 1/2Cl2(g) 725.4 376.4 229.4
107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9
21
E (kJ) Na(g) + Cl(g) Na(g) + 1/2Cl2(g) Hatom,Cl Hsub, Na
725.4 E (kJ) 376.4 Na(g) + Cl(g) 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9
22
Na+(g) + Cl(g) + e– E (kJ) IENa Na(g) + Cl(g) Na(g) + 1/2Cl2(g)
725.4 E (kJ) IENa 376.4 Na(g) + Cl(g) 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9
23
Na+(g) + Cl(g) + e– EACl E (kJ) Na+(g) + Cl–(g) IENa Na(g) + Cl(g)
725.4 EACl E (kJ) Na+(g) + Cl–(g) IENa 376.4 Na(g) + Cl(g) 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9
24
Na+(g) + Cl(g) + e– EACl E (kJ) Na+(g) + Cl–(g) IENa Na(g) + Cl(g)
725.4 EACl E (kJ) Na+(g) + Cl–(g) IENa 376.4 Na(g) + Cl(g) –Hlattice 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) NaCl(s) –410.9
25
H°f = 107.7kJ + 121.7kJ + 496.0kJ + –349.0kJ – 787.3 kJ
H°f = Hsublimation, Na + Hatom, Cl + IE1, Na + EACl – Hlattice, NaCl H°f = 107.7kJ kJ kJ + –349.0kJ – kJ H°f = –410.9 kJ
26
Lewis Symbols atomic symbol indicates element
symbol considered to have 4 sides valence electrons indicated by dots maximum 2 dots per side
27
Examples Na
28
Examples Na Na
29
Examples Na Na Na
30
Examples Na Na Na Na
31
Examples Na Na Na Na Ca Ca Ca Ca Ca
32
Examples Na Na Na Na Ca Ca Ca Ca Ca
Al Ca
33
Na + Cl
34
– + Na + Na + Cl Cl
35
– + Na + Na + Cl Cl Cl Ca + Cl
36
– + Na + Na + Cl Cl – Cl
2+ Ca + Ca + – Cl Cl
37
1s22s22p5 1s22s22p5 + F F
38
1s22s22p5 1s22s22p5 + F F
39
1s22s22p5 1s22s22p5 1s22s22p4 1s22s22p6 – + + + F F F F
40
1s22s22p5 1s22s22p5 1s22s22p4 1s22s22p6 – + + + F F F F – + + + F F F F
41
1s22s22p5 1s22s22p5 1s22s22p4 1s22s22p6 – + + + F F F F – + + + F F F F F F shared e– pair
42
y y x x 2px 2px y y x
43
F F shared e– pair F F
44
Covalent Bond attractive force between atoms resulting from sharing electron pair(s) very strong highly directional
45
single bond: sharing 1 e– pair
double bond: sharing 2 e– pairs triple bond: sharing 3 e– pairs
46
O O O O
47
O O O O O O
48
O O O O O O N N N N
49
O O O O O O N N N N N N
50
+ H H H H
51
+ H H H H y y x F F
52
Pure Covalent Bond + H H H H y y x F F
53
y y x Br F
54
y y x + – Br F
55
y y x + – Br F Polar Covalent Bond Unequal Sharing of Electron Pair(s)
56
Bonding Continuum pure ionic polar covalent pure covalent BrF CsF H2
57
Electronegativity The ability of an atom to attract electron density towards itself increases from L to R across a period and up a group
58
Bonding Continuum pure covalent pure ionic polar covalent nonpolar covalent ionic 2.0 0.5 CsF (3.9) BrF (1.3) H2 (0) E’neg
59
KCl E,neg. = 2.9 – 0.9 = 2.0 ionic HCl E,neg. = 2.9 – 2.1 = 0.8 polar covalent BrCl E,neg. = 2.9 – 2.8 = 0.1 nonpolar covalent Br2 E,neg. = 2.9 – 2.9 = 0 pure covalent
60
Dipole Moment results from separation of charge polar bonds have
increases as E’neg. increases
61
Dipole Moment results from separation of charge polar bonds have
increases as E’neg. increases indicated by crossed arrow pointing from positive end to negative end of dipole
62
H I 2.1 2.2
63
+ – H I 2.1 2.2
64
+ – H I E’neg. = 0.1
65
+ – H I E’neg. = 0.1 H Cl 2.1 2.9
66
+ – H I E’neg. = 0.1 + – H Cl 2.1 2.9
67
+ – H I E’neg. = 0.1 + – H Cl E’neg. = 0.8
68
+ – H I E’neg. = 0.1 + – H Cl E’neg. = 0.8 H F 2.1 4.1
69
+ – H I E’neg. = 0.1 + – H Cl E’neg. = 0.8 + – H F 2.1 4.1
70
+ – H I E’neg. = 0.1 + – H Cl E’neg. = 0.8 + – H F E’neg. = 2.0
71
Lewis Structures shorthand notation for placement of atoms and valence electrons in molecules
72
Drawing Lewis Structures
arrange atoms in formula such that element with only 1 atom in formula is in center surrounded by other atoms in formula connect central atom to outer atoms by single covalent bonds total valence electrons in molecule add valence e– of all atoms add 1 e– for each – charge subtract 1 e– for each + charge subtract 2 e– for each bond
73
use remaining e– to complete octets of outer atoms
place remaining e– on central atom, in pairs when possible check form multiple bonds if necessary
74
Octet Rule all atoms require 8 valence electrons EXCEPTIONS H, He 2 e–
B, Al 6 e– Z or more e–
75
Examples draw Lewis structures for each of the following
76
Methane, CH4
77
Methane, CH4 H H C H H
78
Methane, CH4 H H C H H
79
Methane, CH4 C 4 e– H H 4 H 4 e– C 8 e– H H
80
Methane, CH4 C 4 e– H H 4 H 4 e– C 8 e– H H 4 bonds – 8 e– 0 e–
81
SnCl3– Cl Sn Cl Cl
82
SnCl3– Cl Sn Cl Cl
83
SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl
84
SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e–
85
SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e–
86
SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e– – 18 e– 2 e–
87
SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e– – 18 e– 2 e– – 2 e–
88
SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e– – 18 e– 2 e– – 2 e–
89
XeF4 F F Xe F F
90
XeF4 Xe 8 e– F F 4 F 28 e– Xe 36 e– F F 4 bonds – 8 e– 28 e–
91
XeF4 Xe 8 e– F F 4 F 28 e– Xe 36 e– F F 4 bonds – 8 e– 28 e– – 24 e– 4 e–
92
XeF4 Xe 8 e– F F 4 F 28 e– Xe 36 e– F F 4 bonds – 8 e– 28 e– – 24 e– 4 e– – 4 e– 0 e–
93
SF6
94
SF6 S 6 e– F F 6 F 42 e– F S F 48 e– F F 6 bonds –12 e– 36 e– – 36 e– 0 e–
95
O2 O O 2 O 12 e– 1 bond – 2 e– 10 e–
96
O2 O O 2 O 12 e– 1 bond – 2 e– 10 e– – 10 e– 0 e–
97
O O O O O O
98
Form Multiple Bond O O
99
Form Multiple Bond O O
100
Form Multiple Bond O O O O
101
N2 N N 2 N 10 e– 1 bond – 2 e– 8 e–
102
N2 N N 2 N 10 e– 1 bond – 2 e– 8 e– – 8 e– 0 e–
103
Form Multiple Bonds N N
104
Form Multiple Bonds N N N N
105
Form Multiple Bonds N N N N N N
106
CO2 O C O C 4 e– 2 O 12 e– 16 e– 2 bonds – 4 e– 12 e– – 12 e– 0 e–
107
O C O O C O O C O
108
Resonance more than one valid Lewis structure
each structure called resonance structure
109
O C O O C O O C O
110
Resonance Hybrid average of resonance structures
written in square brackets
111
Bond Order 1, single bond 2, double bond 3, triple bond
112
O C O O C O O C O B.O.left bond = = 2 3
113
O C O O C O O C O B.O.left bond = = 2 3 B.O.right bond = = 2 3
114
O C O O C O O C O B.O.left bond = = 2 3 B.O.right bond = = 2 3 O C O
115
O C O O C O O C O B.O.left bond = = 2 3 B.O.right bond = = 2 3 O C O
116
CO32–
117
CO32– O O O C C C
118
CO32– O O O C C C
B.O.each bond = = 1.3 3
119
CO32– O O O C C C
B.O.each bond = = 1.3 3 2– O C O O
120
Bond Strength and Bond Length
triple < double < single bond strength single < double < triple
121
Length (Å) C C 1.54 C C 1.34 C C 1.20
122
Length (Å) Strength (kJ/mol) C C 1.54 348 C C 1.34 614 C C 1.20 839
123
Formal Charge an accounting tool for electron ownership
(# valance e– in free atom) – (# e– in lone pairs on atom) – 1/2(# bonded e– on atom)
124
Best structure has zero FC on all atoms lowest FC possible
–FC on most electronegative atoms and +FC on least electronegative atoms
125
For example, consider thiocyanate ion
126
For example, consider thiocyanate ion
SCN–
127
For example, consider thiocyanate ion
SCN– N C S C S N S N C
128
For example, consider thiocyanate ion
SCN– N C S C S S N C N FCN = 5 – 4 – 2 = –1
129
For example, consider thiocyanate ion
SCN– N C S C S C N S N FCN = 5 – 4 – 2 = –1 FCC = 4 – 0 – 4 = 0
130
For example, consider thiocyanate ion
SCN– N C C S C S S N N FCN = 5 – 4 – 2 = –1 FCC = 4 – 0 – 4 = 0 FCS = 6 – 4 – 2 = 0
131
For example, consider thiocyanate ion
SCN– –1 N C C S C S S N N FCN = 5 – 4 – 2 = –1 FCC = 4 – 4 – 2 = –2 FCS = 6 – 0 – 4 = +2
132
For example, consider thiocyanate ion
SCN– –1 –2 +2 –1 N C S C S N S N C FCN = 5 – 0 – 4 = +1 FCC = 4 – 4 – 2 = –2 FCS = 6 – 4 – 2 = 0
133
For example, consider thiocyanate ion
SCN– –1 –2 +2 –1 +1 –2 N C S C S N S N C
134
For example, consider thiocyanate ion
SCN– –1 –2 +2 –1 +1 –2 N C S C S N S N C best structure because lowest FC and –FC on most electronegative atom
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.