Presentation is loading. Please wait.

Presentation is loading. Please wait.

doc.: IEEE <doc#>

Similar presentations


Presentation on theme: "doc.: IEEE <doc#>"— Presentation transcript:

1 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Hitachi Direct Sequence UWB Impulse Radio System ] Date Submitted: [January 2005] Source: [(1)Akira Maeki, Ryosuke Fujiwara, Kenichi Mizugaki, Masayuki Miyazaki, Masaru Kokubo, (2)Yasuyuki Okuma, Miki Hayakawa, Shinsuke Kobayashi, Noboru Koshizuka, Ken Sakamura ] Company [(1) Hitachi, Ltd., Central Research Laboratory and Advanced Research Laboratory, (2) YRP Ubiquitous Networking Laboratory ] Address [(1) Higashi Koigakubo Kokubunji-shi, Tokyo JAPAN (2)28th KOWA Bldg., , Nishi-Gotanda Shinagawa-ku, Tokyo JAPAN] Voice:[ ], FAX: [ ], Re: [Response to Call for Proposals] Abstract: [This document proposes Hitachi, Ltd.’s PHY proposal for the IEEE alternate PHY standard] Purpose: [Proposal for the IEEE a standard.] Notice: This document has been prepared to assist the IEEE P It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P Akira Maeki, Hitachi, Ltd. <author>, <company>

2 Hitachi, Ltd. Proposal for IEEE 802.15.4a
<month year> doc.: IEEE <doc#> January 2005 Hitachi, Ltd. Proposal for IEEE a DS- UWB Impulse Radio Akira Maeki Hitachi, Ltd. Akira Maeki, Hitachi, Ltd. <author>, <company>

3 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Contents DS-UWB IR Proposal Details of the System Evaluation Location Awareness Summary Akira Maeki, Hitachi, Ltd. <author>, <company>

4 Direct Sequence UWB Impulse Radio System (DS-UWB IR)
<month year> doc.: IEEE <doc#> January 2005 Direct Sequence UWB Impulse Radio System (DS-UWB IR) Pulse Generator PA Impulse Radio DBPSK Transmitter t PRF=Tens of MHz PRF :Pulse Repetition Frequency Receiver RF BB Akira Maeki, Hitachi, Ltd. <author>, <company>

5 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 UWB Pulse and Spectrum -40 Initial Target : Arbitrary Pulse in Low Band ( GHz) -50 -60 EIRP (dBm/MHz) -70 Example: 2.5ns Gaussian Pulse Center Frequency=4.1GHz 10dB BW=1.4GHz TxPower (ave.)= -13.3dBm Low Band ( GHz) High Band (6-10GHz) -80 -90 1 2 3 4 5 6 7 8 9 10 11 Frequency (GHz) Akira Maeki, Hitachi, Ltd. <author>, <company>

6 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Why DS-UWB IR? Low Power Consumption : -Very Simple Architecture -Low Rate Sampling ADC : Tens of Msps, 2-4bits Low Cost : -CMOS Implementation is Feasible (Peak Power <10dBm) -Low Band ( GHz) High Location Accuracy : -Narrow Pulse (2.5ns)  ~30cm in 30m region (AWGN) Scalability : by Spread Factor 258kbps @30m (cf. ZigBee (cf. Bluetooth Akira Maeki, Hitachi, Ltd. <author>, <company>

7 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Evaluation Results Scalability 258kbps at 30m, 10.7Mbps at 10m Low Power Consumption Tx=30mW, Rx=120mW Low Cost CMOS implementation High Location Accuracy 30cm at 30m (AWGN) <40cm at 40m (CM1) Akira Maeki, Hitachi, Ltd. <author>, <company>

8 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Benchmark Hitachi Proposal DS-UWB IEEE Data Rate & Range 258kbps @30m Tx: 30mW Rx: 120mW Tx: 50-60mW #1 Rx: 50-60mW Power Consumption Location Accuracy (30m range in AWGN) 30cm 2-3m #2 #1: commercial chip example #2: Sampling Rate=64Msps Akira Maeki, Hitachi, Ltd. <author>, <company>

9 Details of the System Evaluation
<month year> doc.: IEEE <doc#> January 2005 Details of the System Evaluation 1. General Definitions 2. Signal Robustness 3. Technical Feasibility Akira Maeki, Hitachi, Ltd. <author>, <company>

10 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 1. General Definitions -Overview -Parameters for the Simulations -Scalability -Link Budget Akira Maeki, Hitachi, Ltd. <author>, <company>

11 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Overview System Parameters (Slide 12-13) Frame Format (Slide 19) System Performance (Slide 22-24) SOP evaluation Not finished yet Code 3 Code 1 Multiple Access: CDMA (Slide 18) 31chip M-Sequence Transceiver (Slide 15) Tx PAN coordinator Anchor Nodes (Known position) Rx Tx (Slide 17) Rx (Slide 28-29) Code 2 Interference Interferer Sync. Node Coexistence (Slide 25) FFD (Full Function Device) Location Awareness (Slide 33-40) RFD (Reduced Function Device) Akira Maeki, Hitachi, Ltd. <author>, <company>

12 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 System Parameters Data Rate: Data Rate Range 32MHz (=31ns) 2.5ns Nominal 258kbps 30m Optional 10.7Mbps 10m 1 symbol for 10.7Mbps mode (optional) 2.5ns Gaussian Pulse with PRF=32MHz (Data Rate depends on Spread Factor:124 for 258kbps, 3 for 10.7Mbps) Hardware specifications: Crystal =± 20ppm ADC=32Msps, 4bits (Including Location Awareness) Akira Maeki, Hitachi, Ltd. <author>, <company>

13 Scalability with spread factor
<month year> doc.: IEEE <doc#> January 2005 Scalability with spread factor Data Rate Modulation Spread Factor Number of Pulses / Bit 32.0 Mbps DBPSK 1 10.7 Mbps 3 4.57 Mbps 7 2.13 Mbps 15 1.03 Mbps 31 258 kbps 124 129 kbps 248 PRF=32MHz Akira Maeki, Hitachi, Ltd. <author>, <company>

14 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Link Budget Parameters Value 258kbps 30m 10.7Mbps 10m Units Center Frequency 4096 MHz Average Transmit Power (2.5ns Gaussian Pulse) -13.3 dBm PRF 32 Spread Factor 124 3 Data Rate 258 10666 kbps Path Loss at 1m 44.7 dB Distance 30 10 m Decay coefficient 2.0  - Additional Path Loss at 30m,10m 29.5 20.0 Implementation Loss 3.0 Antenna gain -3.0 dBi Required 32B 14.0 9.8 Noise Power Density -174 Receiver Total NF 7.0 Margin 5.4 2.9 Akira Maeki, Hitachi, Ltd. <author>, <company>

15 Transceiver Architecture
<month year> doc.: IEEE <doc#> January 2005 Transceiver Architecture Transmitter PA Modulation & Spreading Pulse Generator Data Antenna ANT. Switch Digital PHY BPF Analog RF MAC I LPF ADC Digital Block LNA Xtal Data 0/90 PLL Matched Filter Signal Acquisition Tracking Ranging etc. 4.1GHz 20ppm Receiver LPF ADC <100kgates Q 32MHz, 2-4bits Akira Maeki, Hitachi, Ltd. <author>, <company>

16 Modulation and Spreading
<month year> doc.: IEEE <doc#> January 2005 Modulation and Spreading Items Specifications Pulse Shape 2.5ns Gaussian Pulse RF Frequency 4096±700MHz (10dB BW) PRF 32MHz Modulation DBPSK Spreading Direct Sequence Despreading Matched Filter Sequence M-Sequence Akira Maeki, Hitachi, Ltd. <author>, <company>

17 Modulation and Spreading
<month year> doc.: IEEE <doc#> January 2005 Modulation and Spreading Differential Coding Spreading Spreading DATA PG D Spread Sequence 1 Spread Sequence 2 Spread Sequence 1 Spread Sequence 2 Length value 1 4 1,1,0,1 8 1,1,1,0,0,1,0,1 Length Value 1 3 1,1,0 7 1,1,1,0,0,1,0 15 1,1,1,1,0,0,0,1,0,0,1,1,0,1,0 31 1,1,1,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0 Nominal Data Rate 258kbps Spread Factor =124 :Spread Sequence (4, 31) Optional Data Rate 10.7Mbps Spread Factor= :Spread Sequence (1, 3 ) Akira Maeki, Hitachi, Ltd. <author>, <company>

18 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Multiple Access Multiple access : CDMA Each Piconet has its own sequence (One sequence / Piconet) 31 chip M-sequence has 6 nearly orthogonal sequences. Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6 Auto Correlation Cross Correlation Cross Correlation Akira Maeki, Hitachi, Ltd. <author>, <company>

19 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Frame Format Octets: 2 1 0/4/8 n 2 MAC Sublayer Frame Cont. Data Payload Seq. # Address CRC MHR MSDU MFR Octets: 20 1 1 Data: 32 (n=23) For ACK: 5 (n=0) PHY Layer Frame Length Preamble SFD MPDU SHR PHR PSDU PPDU Akira Maeki, Hitachi, Ltd. <author>, <company>

20 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 System Throughput Acknowledged transmission 22 32 22 5 22 32 HDR PSDU HDR HDR PSDU DATA Frame 1 ACK tLIFS DATA Frame 2 tACK Time for transmission Nominal mode (X0 = 258 kbps)  Throughput: 100 kbps Akira Maeki, Hitachi, Ltd. <author>, <company>

21 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 2. Signal Robustness Multipath Immunity Simultaneously Operating Piconets -Coexistence Akira Maeki, Hitachi, Ltd. <author>, <company>

22 System Performance in AWGN
<month year> doc.: IEEE <doc#> January 2005 System Performance in AWGN -40ppm worst 0ppm ideal 40ppm worst Error factors considered (IQ mismatch etc.) PER 40ppm ideal -40ppm ideal PSDU: 32Bytes Eb/N0 (dB) Akira Maeki, Hitachi, Ltd. <author>, <company>

23 System Performance in Multipath Environment
<month year> doc.: IEEE <doc#> January 2005 System Performance in Multipath Environment Crystal Frequency Stability 0ppm ideal case PER PSDU: 32Bytes Eb/N0 (dB) Akira Maeki, Hitachi, Ltd. <author>, <company>

24 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 System Performance Data Rate AWGN CM1 CM5 258 kbps 56m 27m 24m 10.7 Mbps 14m * * Under evaluation CM1: Indoor Residential (LOS), CM5: Outdoor (LOS) Results obtained using 4a channel model (doc #04/581r7). Crystal=0ppm, NF=7dB, Implementation Loss=3dB, Zero Margin Akira Maeki, Hitachi, Ltd. <author>, <company>

25 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Coexistence The band allocation of GHz allows the coexistence with Wireless LANs & PANs (802.11a/b/g and /3/4) UNII notch for “desired criteria” coexistence -40 Meet the Desired Criteria in the 15.3a (Interferer at 0.3m) -50 -60 EIRP (dBm/MHz) -70 BPF: Rejection=30dB and 5GHz) Low Band ( GHz) High Band (6-10GHz) -80 -90 1 2 3 4 5 6 7 8 9 10 11 Frequency (GHz) Akira Maeki, Hitachi, Ltd. <author>, <company>

26 3. Technical Feasibility
<month year> doc.: IEEE <doc#> January 2005 3. Technical Feasibility Transceiver Architecture Synchronization -Complexity -Evaluation by a Test Bed Akira Maeki, Hitachi, Ltd. <author>, <company>

27 Transceiver Architecture
<month year> doc.: IEEE <doc#> January 2005 Transceiver Architecture Example: Transmitter PA Modulation & Spreading Pulse Generator Data Antenna ANT. Switch Digital PHY BPF Analog RF MAC Rejection=30dB @2.4GHz&5GHz I LPF ADC Digital Block LNA Xtal Data 0/90 PLL Matched Filter Signal Acquisition Tracking Ranging etc. 4.1GHz 20ppm Receiver LPF ADC <100kgates Q 32MHz, 2-4bits Akira Maeki, Hitachi, Ltd. <author>, <company>

28 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Synchronization Two Step Synchronization: Pulse Correlation: Sliding Correlation Code Correlation: Digital Matched Filter Example: Pulse Correlator Digital Domain Analog Domain Code Correlator CORR Detector × ADC MF CORR ABS Threshold Detector + × ADC MF ABS 90 Template Generator LO Timing Control Akira Maeki, Hitachi, Ltd. <author>, <company>

29 Two Step Synchronization
<month year> doc.: IEEE <doc#> January 2005 Two Step Synchronization 2.5ns Rx Signal Tw=31.3ns d=0.5ns Template Sliding correlation for pulse synchronization Symbol: Ts Received Signal d Template Wavelet Tw Pulse sync. No pulse sync. Sampled data Sampling Timing Acquisition Output Of MF Time Akira Maeki, Hitachi, Ltd. <author>, <company>

30 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Unit Manufacturing Complexity Preliminary Evaluation External Components Size* Crystal =± 20ppm BPF Antenna -Ceramic Antenna -Pattern Antenna Analog RF ** 12 mm2 Digital PHY *** Base Band 100 kgates Ranging 1 kgates *0.18mm Standard CMOS Process ** Analog RF : LNA, Mixer, PLL, ADC (Slide 27) *** Base Band : Acquisition, Tracking etc. (Slide 27) Ranging : 1GHz Counter (Slide 38). Akira Maeki, Hitachi, Ltd. <author>, <company>

31 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Manufacturability & Technical Feasibility Akira Maeki, Hitachi, Ltd. <author>, <company>

32 Feasibility Study by the Test Bed
<month year> doc.: IEEE <doc#> January 2005 Feasibility Study by the Test Bed -Send 1000 Pseudo random packets through the variable attenuator (Variable attenuator represents Propagation Loss) -Measure the PER PER<1% for 258kbps at 30m and 10.7Mbps at 10m 1000 Pseudo Random Packets HDR PSDU PER Measurement 22 32 Variable ATT. Tx Rx Propagation Loss Akira Maeki, Hitachi, Ltd. <author>, <company>

33 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Location Awareness Akira Maeki, Hitachi, Ltd. <author>, <company>

34 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Location Awareness Trilateration for Location Awareness - 3 Known-position Nodes (+1 sync. node) - Synchronization by a reference signal - TDOA (Time Difference Of Arrival) based High Location Accuracy : AWGN: cm in 30m Range    Indoor Residential: <40cm in 40m Range Akira Maeki, Hitachi, Ltd. <author>, <company>

35 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Active-TDOA One-way Ranging  Can relax the RFD specifications  Can save power consumption  High Accuracy for mobile node location Synchronization Easier Sync. than TOA/OWR Accuracy Accuracy depends only on the clock at the FFD (Cf. TOA/TWR: Error will be sum up in two nodes) FFD (Anchor) RFD Akira Maeki, Hitachi, Ltd. <author>, <company>

36 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 System Configuration ---Synchronization by a node-- -Expand the Range Wireless/Wired Network Monitor Terminal TDOA (t1-T1) (t2-T2) (t3-T3) Anchor Node 2 Server & Data Base Time of Arrival: t1 t2 t3 T2 T1 T3 Anchor Node 3 “Calculation of the Node Location based on the TDOAs and the Reference Locations” For Sync. Node System Configuration for 2D location measurements Anchor Node 1 Akira Maeki, Hitachi, Ltd. <author>, <company>

37 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 TDOA Based Measuring ---Synchronization by a node-- Signal from a node for location Signal from a node whose position is known Anchor 1 Anchors are not synchronized Anchor 2 time Anchor 1 Temporary synchronization Anchor 2 time Reference time Anchor 1 Measure the time difference of arrival Anchor 2 time The Location is calculated by the Time Difference those Akira Maeki, Hitachi, Ltd. <author>, <company>

38 Receiver Architecture
<month year> doc.: IEEE <doc#> January 2005 Receiver Architecture Count the time difference of arrival by the Counter The Counter and Memory are the additional circuits to the Rx (Gate size: About 1kgates) Receiver Sync. Detection Demod. Timing Counter Counter Memory Akira Maeki, Hitachi, Ltd. <author>, <company>

39 Parameters for Simulations
<month year> doc.: IEEE <doc#> January 2005 Parameters for Simulations ADC : 32Msps Counter clock : 1GHz Packet Format: same packet as data transmission Crystal Accuracy : 0ppm (ideal) Number of trial : 100 for each distance Channel Model : Indoor Residential LOS (CM1) Akira Maeki, Hitachi, Ltd. <author>, <company>

40 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Simulation Results Channel Model : Indoor Residential LOS (CM1) Frequency Stability: 0ppm Akira Maeki, Hitachi, Ltd. <author>, <company>

41 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Summary DS-UWB IR is Simple, Scalable and Reliable 258kbps at 30m (Nominal), 10.7Mbps at 10m (Optional) Location Awareness: 40cm in 40m region (CM1) In a regular packet transmission, with one additional counter. Proposed DS-UWB IR - fc=4.1GHz, BW=1.4GHz at Low Band ( GHz) - 2.5ns Gaussian Pulse with PRF of 32MHz - DBPSK Modulation - TDOA for Location Awareness Akira Maeki, Hitachi, Ltd. <author>, <company>

42 doc.: IEEE 802.15-<doc#>
<month year> doc.: IEEE <doc#> January 2005 Conclusion Hitachi DS-UWB System - Scalable data rate up to 10.7Mbps at 10m - High Location Accuracy of ~40cm in 40m range are the main differentiation from the 15.4 system Still have evaluations to do… Can show the feasibility in March by the Test Bed and TEG chip Akira Maeki, Hitachi, Ltd. <author>, <company>


Download ppt "doc.: IEEE <doc#>"

Similar presentations


Ads by Google