Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tobit-Model Einordnung:

Similar presentations


Presentation on theme: "Tobit-Model Einordnung:"— Presentation transcript:

1 Tobit-Model Einordnung:
Gruppe der Limited dependent Variable models; zB 0-1 Variable Probit/Logit Sonderfall beschränkter Variablen Nicht mit KQ-Methode schätzbar; sondern Maximum Likelihood

2 The Tobit - Model An example
Wooldridge (2003), Introductory Econometrics, 2nd edition, Chap.17.2 Other: Wooldridge (2002): Econometric Analysis of Cross Section and Panel Data, Chapter 16. Ruud (2000): An Introduction to Classical Econometric Theory, Chapter 28. Greene (2000): Econometric Analysis, 4th edition, Chapter 20.3

3 Problem: special attribute(s) of the dependent variable (DV)
1. Tobit - Model Problem: special attribute(s) of the dependent variable (DV) dependent variable constrained and clustering of observations at the constraint Examples: consumption (1. not 2.) wage changes (2. not 1.) Labor supply (1. and 2.)

4 left- and right-censoring in the data
1. Tobit - Model left- and right-censoring in the data left-censored, from below right-censored, top-coded Distribution of hourly benefits, Fringe.dta, command: hist hrbens Distribution of log-wages in West-Germany, males, , clerks, IABS01

5 1. Tobit - Model 2 different sorts of Models Data censoring
Earnings variable (IABS) Demand for stadium tickets Duration in unemployment Corner solutions Labor Supply Household expenditures on holidays

6 Censoring in a regression framework
1. Tobit - Model Censoring in a regression framework Ruud, Figure 28.2

7 OLS on the complete sample biased and inconsistent,
1. Tobit - Model If DV is constrained and if there is clustering OLS on the complete sample biased and inconsistent, OLS on the unclustered part biased and inconsistent. Intuition (gesamtstichprobe): Effekt von x auf y nicht konstant für alle x Intuition (Teilstichprobe): Ignoriert den Übergang von Nullern zu positiven Werten NB: OLS zur Null verzerrt, aber richtiges Vorzeichen Nichtlinearität: Zeichne ein Schaubild, wenn Steigung der Gerade ungleich Null schneidet sie irgendwann die Achse Konstante partielle Effekte unplausibel bspw. im AA Kontext. Bei Randlösung. Erhöhung des Stundelohnes hat keinen Effekt auf AA, aber im Positiven Bereich natürlich schon Figure 28.2, Ruud

8 1. Tobit - Model  do not throw away information (Tobin 1958)
Solution possibility 1: Estimate a Probit Model if Loses information on y.  do not throw away information (Tobin 1958) Solution: Tobit-regression

9 1. Tobit - Model latent variable Trick: introduce a latent variable
Assume: linear conditional expectation for latent Var. Assumption: if

10 1. Tobit - Model Estimation Random sample
Estimation of the parameters of the model: Non-linear LS estimation Maximum likelihood method

11 Maximum Likelihood estimation
1. Tobit - Model Maximum Likelihood estimation Maximum likelihood estimation: Likelihood-function consists in two parts Probit-Part For censored observations we have:

12 Maximum Likelihood estimation
1. Tobit - Model Maximum Likelihood estimation 2. Linear part Can formulate a linear model for the part that is uncensored:

13 1. Tobit - Model Likelihood function
Likelihood- and Log-Likelihood-function: ln L is maximized wrt β and σ. Intuition for ML: Choose parameters such that the probability of having observed this sample is maximized FOC yields estimator for β and σ. β and σ are asymptotically normal. Inference is standard.

14 2. An Example Data: Dependent Variable: 753 Observations
hours working hours (yearly) of married women 753 Observations 428 women exchange work for money in the labor market (hours vary in the dataset between 12 and 4950) 325 women do not work.

15 2. An Example explanatory variables: age age educ education
in years of schooling exper experience in actual years of work nwifeinc family income (in 1000$) that is not generated by the woman kidslt6 number of kids age < 6 kidsge6 number of kids 6< age < 18

16 2. An Example Estimation of a Tobit-Model (in Stata):
Source: Wooldridge, Econometric Analysis of Cross Section and Panel Data (2002)  estimated coefficients are to be interpreted as the effect of the regressors on the latent variable.

17 2. An example Comparison OLS - Tobit
Direct comparison of OLS and Tobit output impossible OLS Tobit nwifeinc -3.45 -8.81 educ 28.76 80.65 exper 65.67 131.56 exper2 -0.700 -1.86 age -30.61 -54.41 Kidslt 6 Kidsge 6 -32.78 -16.22 Constant 965.31 Log- likelihood ---- R2 0.266 0.274 750.18 Dependent variable: hours Grund: OLS: beta ist der Effekt von x auf y Tobit: beta ist der Effekt von x auf y* Funny: MLE-Schätzer ugf. OLS geteilt durch anzahl der nichtzensierten Beobachtungen

18 Interpretation of coefficients
2. An example Interpretation of coefficients Marginal effect on the latent variable Slope of dashed line: tobit Slope of solid line: OLS Formeln aus WO, p. 521ff.

19 Interpretation of coefficients
2. An example Interpretation of coefficients Marginal effect on the actual variable Probability that an observation is different from zero (if 1, then OLS=Tobit) y Green line!! x

20 Interpretation of coefficients
2. An example Interpretation of coefficients Marginal effect on positive observations Where λ(c) is called inverse Mills Ratio: Formeln aus WO, P. 521ff Intuition für 3 Wenn sich x ändert, ändert sich die Zusammensetzung derjenigen, für die gilt y>0. Which means that the effect on the observations which are already positive, and where the effect is beta has to be adjusted by the effect on those individuals that didn‘t have positive y‘s before λ(c) captures the change in the population, we condition on (y>0), when changing x.

21 Interpretation of coefficients
2. An example Interpretation of coefficients Marginal effect on the probability, that an observation is uncensored. It follows: Intuition für 4: Prob(y=0|x)=Prob(y<=0|x)=Prob(u<=-xb|x)=Prob(u>=xb|x)=1-Phi(xb|x) NB: For coefficients 2-4 need choose an appropriate x-vector!

22 Interpretation of coefficients
2. An example Interpretation of coefficients Comparison OLS - TOBIT on the basis of the marginal effect on actual DV (example educ, for an average individual): OLS TOBIT E(Y|x) einmal mit OLS und einmal mit Tobit at mean values Bivariat gilt das immer: OLS verzerrt zur Null (bei gleichem Vorzeichen und ähnlicher Signifikanz..) 48,73 28.76

23 Interpretation of coefficients
2. An example Interpretation of coefficients Interpretation: On average, an additional year of education increases the labor supply by 48,7 hours (for an average individual).  OLS underestimates the effect of education on the labor supply (in the average of the explanatory variables).

24 marginal effects: dtobit
2. An example marginal effects: dtobit dtobit calculates the four different marginal effects (at the mean of the explanatory variables):

25 marginal effects: dtobit
2. An example marginal effects: dtobit

26 marginal effects: dtobit
2. An example marginal effects: dtobit

27 3. Extensions Specification
Unobserved, independent heterogeneity → not problematic, as OLS Endogeneity (left-out variables, simultaneity) → „standard-IV“, similar to OLS Heteroskedasticity, nonormal errors → inconsistency, different from OLS

28 3. Extensions alternatives for Tobit
nonlinear estimation, eg. E(Y|x)=exp(xb) CLAD-estimator (for censoring problems) hurdle models, two-tiered models (for corner solution problems)


Download ppt "Tobit-Model Einordnung:"

Similar presentations


Ads by Google