Download presentation
Presentation is loading. Please wait.
1
Nucleosynthesis 12 C(πΌ,πΎ) 16 O at MAGIX/MESA
Stefan Lunkenheimer MAGIX Collaboration Meeting 2017
2
Topics S-Factor Simulation Outlook
3
S-Factor
4
Stages of stellar nucleosynthesis
Hydrogen Burning (PPI-III & CNO Chain) Fuel: proton πβ2β
K Main product: 4 He Helium Burning Fuel: 4 He πβ2β
K Main product: 12 C , 16 O
5
Helium Burning in red giants
Main reactions: 3πΌβ 12 C+πΎ 12 C πΌ,πΎ 16 O 12 C/ 16 O abundance ratio Further burning states Nucleosynthesis in massive stars Cp. Hammache: 12 C πΌ,πΎ 16 O in massive star stellar evolution
6
Gamow-Peak Fusion reaction below Coulomb barrier ππβΌ15 π=2β
10 8 K Transmission probability governed by tunnel efffect Gamow-Peak πΈ 0 Convolution of probability distribution Maxwell-Boltxmann QM Coulomb barrier transmission Depends on reaction and temperature Cp. Marialuisa Aliotta: Exotic beam studies in Nuclear Astrophyiscs
7
S-Factor Nonresonant Cross section π πΈ = 1 πΈ π β 2π π 1 π 2 πΌπ π£ π(πΈ)
π πΈ = 1 πΈ π β 2π π 1 π 2 πΌπ π£ π(πΈ) πβ Factor = probability to tunnel through Coulomb barrier π£= velocity between the two nuclei πΌ= fine structure constant π 1 ,π 2 = Proton number of the nuclei π πΈ = Deviation Factor from trivial model
8
Gamow-Peak for 12 C πΌ,πΎ 16 O Gamow-Peak (πβ2β
10 8 K)
π πΈ =πΈβ
π π/ πΈ π(πΈ) Gamow-Peak (πβ2β
10 8 K) πΈ 0 = πβ
πβ
π β300 keV π= Bolzmann constant π=ππΌ π 1 π 2 2π π 2 π= π 1 π 2 π 1 + π reduced mass Gamow Width Ξ=4 πΈ 0 ππ/3
9
Cross section π( πΈ 0 )~ 10 β17 barn
Precise low-energy measurements required Direct measurements never πΈ cm <0.9 MeV Cp. Simulation of Ugalde 2013
10
Measurement of S-Factor
Approximate π(300 keV) Buchmann (2005) 102β198 keVβ
b Caughlan and Fowler (1988) 120β220 keVβ
b Hammer (2005) 162Β±39 keVβ
b
11
Measurement at MAGIX@MESA
Time reverted reaction 16 O(πΎ,πΌ) 12 C Cross section gain a factor of Γ100 Inelastic π β scattering on oxygen gas Measurement of coincidence ( π β ,πΌ) suppress background πΌ-Particle with low energy High Luminosity
12
Inverse Kinematik Time reversed reaction: π( πΈ 0 )~ 10 β15 barn
High Energy resolution required MAGIX πΈ 0 Cp. Simulation of Ugalde 2013
13
Simulation
14
Introduction MXWare (see talk Caiazza) Monte Carlo Integration
Fix Beam Energy Target at Rest Simulation acceptance 4π
15
Kinematik Momentum transfer π 2 =β4πΈ πΈ β² sin 2 π 2
Photon Energy π= π 2 β π 2 β π 2 2π with π 2 = p πΎ π + p π π invariant mass of photon and oxygen π= Oxygen mass Inelastic scattering cross section π 2 π πΞ©ππΈβ² = 4πΌ 2 πΈ β²2 π 4 π 2 π 2 ,π β
cos 2 π π 1 π 2 ,π β
sin 2 π 2
16
Virtual Photon flux Relation beween structural functions and the transversal / longitudinal part of the virtual photon cross section π π , π πΏ π 1 = π
4 π 2 πΌ π π π 2 = π
4 π 2 πΌ 1β π 2 π 2 β1 ( π πΏ + π π ) with π
= π 2 β π 2 2π So we get π 3 π πΞ©π πΈ β² =Ξ π π +π π πΏ with Ξ= πΌπ
2 π 2 π 2 β
πΈ β² πΈ β
1 1βπ π= 1β2 π 2 β π 2 π 2 tan 2 π β1 For π 2 β0 : π πΏ vanish and π π β π tot πΎ β O βπ π 5 π π Ξ© π π πΈ β² π Ξ© β =Ξ π π π£ π Ξ© β Cp. Halzen & Martin: Quarks and Leptons
17
Time reversal Factor Direct cross section -> Measurement
Compare with inverse cross section -> extract the S-Factor Calculate time reversal factor
18
Time reversal Factor Phase space examination under T-symmetry invariance π πβπ π πβπ = (2 πΌ 3 +1)(2 πΌ 4 +1) (2 πΌ 1 +1)(2 πΌ 2 +1) β
| π | π 2 | π | π 2 Spinstatistic: I=0 for evenβeven nuclides ( 4 He, 12 C, 16 O ) in ground state 2 πΌ πΎ +1 =2 for photon. So we get π( 16 O πΎ,πΌ 12 C) = π 2 β π He + π C π 2 β π He β π C π 2 β π O 2 π 2 β π O 2 β
π( 12 C (πΌ,πΎ) 16 O) Cp. Mayer-Kuckuk Kernphysik: Chapter 7.3
19
Result of first simulations
Nonresonant cross section π( 16 π(πΎ,πΌ) 12 πΆ) Simulation correlate to the results of Ugalde 4πβ Simulation βΌ0.1 mHz Reaction Rate by πΈ 0 with πΏβΌ π π β2 π β1 Worst case Luminosity (see later talks) Now simulation with π β , πΌβAcceptance needed.
20
Outlook
21
Simulation Finish simulation Preliminary results electron acceptance
πΌ-Particle acceptance Preliminary results Need measurement on angles smaller than Spectrometer coverage 0 degree scattering -> New Theoretic calculations
22
πΌ-Detection Low kinetic energy Needs specialized detector
βΌ20 MeV Needs specialized detector Silicon-Strip-Detector Choose and Test Silicon-Strip-Detectors in the Lab
24
BACKUP
25
Production factor Waver and Woosley Phys Rep 227 (1993) 65
26
Two-Body Reaction In the center of mass frame 16 π( πΎ β ,πΌ) 12 πΆ
πΈ 3 = π 2 + π 3 2 β π π πΈ 4 = π 2 + π 4 2 β π π π = πΈ 2 β π 2 = π 2 β π 3 + π π 2 β π 3 β π π
27
Electron scattering Cross section inelastic scattering (cp. Chapter 7.2) π 2 π πΞ©ππΈβ² = ππ πΞ© β Mott π 2 π 2 ,π +2 π 1 π 2 ,π tan 2 π 2 With structural functions π 1 , π 2 And Mott crossection (in this case) ππ πΞ© Mott β = 4πΌ 2 πΈ β²2 π 4 cos 2 π 2 We get (cp. Halzen & Martin Chapter 8) π 2 π πΞ©ππΈβ² = 4πΌ 2 πΈ β²2 π 4 π 2 π 2 ,π β
cos 2 π 2 +2 π 1 π 2 ,π β
sin 2 π 2
28
Basic of Simulation Connection between count rate and cross section π= Ξ© π΄ Ξ© dπ πΞ© πΞ©β
πΏππ‘+ π BG With πΏ : Luminosity π : Number of counts π΄ Ξ© : Acceptance (1 full accepted, 0 not detected)
29
Monte Carlo Integration
Definition of mean value in volume π: π = 1 π π π π₯ π π π₯ Estimator for mean value: π β 1 π π=1 π π( π₯ π ) Monte-Carlo Integration: π π π₯ π π π₯ = π β π π π=1 π π π₯ π Β± π π π 2 β π 2 Strategies for numerical improvements: Improve convergence 1/ π Improve variance π 2 β π 2
30
Cross section simulation
ππ π Ξ© π π πΈ π π Ξ© β π Ξ© π π πΈ π π Ξ© β Transform Ξ©,πΈ β π,1/ π 2 ,π with det π½= π 4 π 2ππΈ πΈ β² With Monte-Carlo Integration: ππ π Ξ© π π πΈ π π Ξ© β π Ξ© π π πΈ π π Ξ© β = V N π det π½β
ππ π Ξ© π π πΈ π π Ξ© β π,1/ π 2 ,π, Ξ© β Define π π =πβ
det π½β
ππ π Ξ© π π πΈ π π Ξ© β So we get π π = π 4 π 2ππΈ πΈ β² β
π£β
Ξπβ
Ξπβ
Ξ cos π β β
Ξ π β β
Ξ β
π π π£ π Ξ© β
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.