Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 45 – Overview: The Body’s Long-Distance Regulators

Similar presentations


Presentation on theme: "Chapter 45 – Overview: The Body’s Long-Distance Regulators"— Presentation transcript:

1 Chapter 45 – Overview: The Body’s Long-Distance Regulators
Animal hormones are chemical signals that are secreted into the circulatory system and communicate regulatory messages within the body Hormones reach all parts of the body, but only target cells have receptors for that hormone Insect metamorphosis is regulated by hormones © 2011 Pearson Education, Inc.

2 Two systems coordinate communication throughout the body: the endocrine system and the nervous system The endocrine system secretes hormones that coordinate slower but longer-acting responses including reproduction, development, energy metabolism, growth, and behavior The nervous system conveys high-speed electrical signals along specialized cells called neurons; these signals regulate other cells © 2011 Pearson Education, Inc.

3 Concept 45.1: Hormones and other signaling molecules bind to target receptors, triggering specific response pathways Endocrine signaling is just one of several ways that information is transmitted between animal cells © 2011 Pearson Education, Inc.

4 Intercellular Communication
The ways that signals are transmitted between animal cells are classified by two criteria The type of secreting cell The route taken by the signal in reaching its target © 2011 Pearson Education, Inc.

5 Endocrine Signaling Hormones secreted into extracellular fluids by endocrine cells reach their targets via the bloodstream Endocrine signaling maintains homeostasis, mediates responses to stimuli, regulates growth and development © 2011 Pearson Education, Inc.

6 Paracrine and Autocrine Signaling
Local regulators are molecules that act over short distances, reaching target cells solely by diffusion In paracrine signaling, the target cells lie near the secreting cells In autocrine signaling, the target cell is also the secreting cell © 2011 Pearson Education, Inc.

7 (a) Endocrine signaling
Figure 45.2a Blood vessel Response (a) Endocrine signaling Response (b) Paracrine signaling Figure 45.2 Intercellular communication by secreted molecules. Response (c) Autocrine signaling

8 Synaptic and Neuroendocrine Signaling
In synaptic signaling, neurons form specialized junctions with target cells, called synapses At synapses, neurons secrete molecules called neurotransmitters that diffuse short distances and bind to receptors on target cells In neuroendocrine signaling, specialized neurosecretory cells secrete molecules called neurohormones that travel to target cells via the bloodstream © 2011 Pearson Education, Inc.

9 (d) Synaptic signaling
Figure 45.2b Synapse Neuron Response (d) Synaptic signaling Neurosecretory cell Figure 45.2 Intercellular communication by secreted molecules. Blood vessel Response (e) Neuroendocrine signaling

10 Endocrine Tissues and Organs
In some tissues, endocrine cells are grouped together in ductless organs called endocrine glands Endocrine glands secrete hormones directly into surrounding fluid These contrast with exocrine glands, which have ducts and which secrete substances onto body surfaces or into cavities © 2011 Pearson Education, Inc.

11 Major endocrine glands:
Figure 45.4 Major endocrine glands: Hypothalamus Pineal gland Pituitary gland Organs containing endocrine cells: Thyroid gland Thymus Parathyroid glands (behind thyroid) Heart Liver Adrenal glands (atop kidneys) Stomach Pancreas Kidneys Small intestine Figure 45.4 Major human endocrine glands. Ovaries (female) Testes (male)

12 Chemical Classes of Hormones
Three major classes of molecules function as hormones in vertebrates Polypeptides (proteins and peptides) Amines derived from amino acids Steroid hormones © 2011 Pearson Education, Inc.

13 Lipid-soluble hormones (steroid hormones) pass easily through cell membranes, while water-soluble hormones (polypeptides and amines) do not The solubility of a hormone correlates with the location of receptors inside or on the surface of target cells © 2011 Pearson Education, Inc.

14 Water-soluble (hydrophilic) Lipid-soluble (hydrophobic)
Figure 45.5 Water-soluble (hydrophilic) Lipid-soluble (hydrophobic) Polypeptides Steroids 0.8 nm Insulin Cortisol Amines Figure 45.5 Hormones differ in structure and solubility. Epinephrine Thyroxine

15 Cellular Response Pathways
Water- and lipid-soluble hormones differ in their paths through a body Water-soluble hormones are secreted by exocytosis, travel freely in the bloodstream, and bind to cell- surface receptors Lipid-soluble hormones diffuse across cell membranes, travel in the bloodstream bound to transport proteins, and diffuse through the membrane of target cells © 2011 Pearson Education, Inc.

16 Water- soluble hormone Lipid- soluble hormone
Figure SECRETORY CELL Water- soluble hormone Lipid- soluble hormone VIA BLOOD Transport protein Signal receptor TARGET CELL Signal receptor Figure 45.6 Receptor location varies with hormone type. NUCLEUS (a) (b)

17 Pathway for Water-Soluble Hormones
Binding of a hormone to its receptor initiates a signal transduction pathway leading to responses in the cytoplasm, enzyme activation, or a change in gene expression © 2011 Pearson Education, Inc.

18 Epinephrine binds to receptors on the plasma membrane of liver cells
The hormone epinephrine has multiple effects in mediating the body’s response to short-term stress Epinephrine binds to receptors on the plasma membrane of liver cells This triggers the release of messenger molecules that activate enzymes and result in the release of glucose into the bloodstream © 2011 Pearson Education, Inc.

19 G protein-coupled receptor GTP
Figure Epinephrine Adenylyl cyclase G protein G protein-coupled receptor GTP ATP Second messenger cAMP Figure 45.7 Cell-surface hormone receptors trigger signal transduction. Protein kinase A Inhibition of glycogen synthesis Promotion of glycogen breakdown

20 Pathway for Lipid-Soluble Hormones
The response to a lipid-soluble hormone is usually a change in gene expression Steroids, thyroid hormones, and the hormonal form of vitamin D enter target cells and bind to protein receptors in the cytoplasm or nucleus Protein-receptor complexes then act as transcription factors in the nucleus, regulating transcription of specific genes © 2011 Pearson Education, Inc.

21 Estradiol (estrogen) receptor
Figure Hormone (estradiol) EXTRACELLULAR FLUID Estradiol (estrogen) receptor Plasma membrane Hormone-receptor complex NUCLEUS CYTOPLASM Figure 45.8 Steroid hormone receptors directly regulate gene expression. DNA Vitellogenin mRNA for vitellogenin

22 Multiple Effects of Hormones
The same hormone may have different effects on target cells that have Different receptors for the hormone Different signal transduction pathways © 2011 Pearson Education, Inc.

23 Same receptors but different intracellular proteins (not shown)
Figure 45.9 Same receptors but different intracellular proteins (not shown) Different receptors Different cellular responses Different cellular responses Epinephrine Epinephrine Epinephrine  receptor  receptor  receptor Glycogen deposits Vessel dilates. Figure 45.9 One hormone, different effects. Vessel constricts. Glycogen breaks down and glucose is released from cell. (a) Liver cell (b) Skeletal muscle blood vessel Intestinal blood vessel (c)

24 Signaling by Local Regulators
Local regulators are secreted molecules that link neighboring cells or directly regulate the secreting cell Types of local regulators Cytokines and growth factors Nitric oxide (NO) Prostaglandins © 2011 Pearson Education, Inc.

25 Coordination of Neuroendocrine and Endocrine Signaling
The endocrine and nervous systems generally act coordinately to control reproduction and development For example, in larvae of butterflies and moths, the signals that direct molting originate in the brain © 2011 Pearson Education, Inc.

26 Concept 45.2: Feedback regulation and antagonistic hormone pairs are common in endocrine systems
Hormones are assembled into regulatory pathways © 2011 Pearson Education, Inc.

27 Simple Hormone Pathways
Hormones are released from an endocrine cell, travel through the bloodstream, and interact with specific receptors within a target cell to cause a physiological response © 2011 Pearson Education, Inc.

28 S cells of duodenum secrete the hormone secretin ( ).
Figure 45.11 Pathway Example Stimulus Low pH in duodenum S cells of duodenum secrete the hormone secretin ( ). Endocrine cell Hormone Negative feedback Blood vessel Figure A simple endocrine pathway. Target cells Pancreas Response Bicarbonate release

29 Hypothalamus/ posterior pituitary
Figure 45.12 Pathway Example Stimulus Suckling Sensory neuron Hypothalamus/ posterior pituitary Posterior pituitary secretes the neurohormone oxytocin ( ). Neurosecretory cell Positive feedback Neurohormone Blood vessel Figure A simple neuroendocrine pathway. Target cells Smooth muscle in breasts Response Milk release

30 Feedback Regulation A negative feedback loop inhibits a response by reducing the initial stimulus, thus preventing excessive pathway activity Positive feedback reinforces a stimulus to produce an even greater response For example, in mammals oxytocin causes the release of milk, causing greater suckling by offspring, which stimulates the release of more oxytocin © 2011 Pearson Education, Inc.

31 Insulin and Glucagon: Control of Blood Glucose
Insulin (decreases blood glucose) and glucagon (increases blood glucose) are antagonistic hormones that help maintain glucose homeostasis The pancreas has clusters of endocrine cells called pancreatic islets with alpha cells that produce glucagon and beta cells that produce insulin © 2011 Pearson Education, Inc.

32 Body cells take up more glucose. Insulin
Figure 45.13 Body cells take up more glucose. Insulin Beta cells of pancreas release insulin into the blood. Liver takes up glucose and stores it as glycogen. STIMULUS: Blood glucose level rises (for instance, after eating a carbohydrate-rich meal). Blood glucose level declines. Homeostasis: Blood glucose level (70–110 mg/m100mL) STIMULUS: Blood glucose level falls (for instance, after skipping a meal). Figure Maintenance of glucose homeostasis by insulin and glucagon. Blood glucose level rises. Liver breaks down glycogen and releases glucose into the blood. Alpha cells of pancreas release glucagon into the blood. Glucagon

33 Target Tissues for Insulin and Glucagon
Insulin reduces blood glucose levels by Promoting the cellular uptake of glucose Slowing glycogen breakdown in the liver Promoting fat storage, not breakdown © 2011 Pearson Education, Inc.

34 Glucagon increases blood glucose levels by
Stimulating conversion of glycogen to glucose in the liver Stimulating breakdown of fat and protein into glucose © 2011 Pearson Education, Inc.


Download ppt "Chapter 45 – Overview: The Body’s Long-Distance Regulators"

Similar presentations


Ads by Google