Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rendering Geometric Primitives Reading: HB4, HB8-1 to HB8-6, HK9.7, 11

Similar presentations


Presentation on theme: "Rendering Geometric Primitives Reading: HB4, HB8-1 to HB8-6, HK9.7, 11"— Presentation transcript:

1 Rendering Geometric Primitives Reading: HB4, HB8-1 to HB8-6, HK9.7, 11
Computer Graphics Last updated on Rendering Geometric Primitives Reading: HB4, HB8-1 to HB8-6, HK9.7, 11

2 Rendering Goal interactive rendering offline rendering
transform computer models into images may or may not be photo-realistic interactive rendering fast, but limited quality roughly follows a fixed patterns of operations rendering pipeline offline rendering ray tracing global illumination

3 Rendering Tasks that need to be performed
project all 3D geometry onto the image plane geometric transformations determine which primitives or parts of primitives are visible hidden surface removal determine which pixels a geometric primitive covers scan conversion compute the color of every visible surface point lighting, shading, texture mapping

4 Rendering Pipeline What is the pipeline?
abstract model for sequence of operations to transform geometric model into digital image abstraction of the way graphics hardware works underlying model for application programming interfaces (APIs) that allow programming of graphics hardware OpenGL Direct 3D Actual implementation details of rendering pipeline will vary

5 Rendering Pipeline Geometry Database Model/View Perspective Lighting
Transform. Lighting Perspective Clipping Scan Conversion Depth Test Texturing Blending Frame- Buffer

6 Geometry Database Geometry database
Application-specific data structure for holding geometric information Depends on specific needs of application triangle, points, mesh with connectivity information, curved surface

7 Model/View Transformation
Geometry Database Model/View Transform. Modeling Transformation Map all geometric objects from local coordinate system into world coordinates Viewing transformation Map all geometry from world coordinates into camera coordinates

8 Lighting Geometry Database Model/View Transform. Lighting Lighting Compute brightness based on property of material and light position(s) Computation is performed per-vertex

9 Perspective Transformation
Geometry Database Model/View Transform. Lighting Perspective Transform. Perspective Transformation Projecting the geometry onto the image plane Projective transformations and model/view transformations can all be expressed with 4x4 matrix operations

10 Clipping Geometry Database Model/View Transform. Lighting Perspective Transform. Clipping Clipping Removal of parts of the geometry that fall outside the visible screen or window region May require re-tessellation of geometry

11 Scan Conversion Scan Conversion
Geometry Database Model/View Transform. Lighting Perspective Transform. Clipping Scan Conversion Scan Conversion Turn 2D drawing primitives (lines, polygons etc.) into individual pixels Interpolate color across primitive Generate discrete fragments

12 Texture Mapping Texture Mapping “Gluing images onto geometry”
Database Model/View Transform. Lighting Perspective Transform. Clipping Scan Conversion Texturing Texture Mapping “Gluing images onto geometry” Color of every fragment is altered by looking up a new color value from an image

13 Depth Test Geometry Database Model/View Transform. Lighting Perspective Transform. Clipping Scan Conversion Texturing Depth Test Depth Test Remove parts of geometry hidden behind other geometric objects Perform on every individual fragment

14 Blending Blending Final image: write fragments to pixels
Geometry Database Model/View Transform. Lighting Perspective Transform. Clipping Scan Conversion Texturing Depth Test Blending Blending Final image: write fragments to pixels Draw from farthest to nearest No blending – replace previous color Blending: combine new & old values with arithmetic operations

15 Frame Buffer Frame Buffer
Geometry Database Model/View Transform. Lighting Perspective Clipping Scan Conversion Depth Test Texturing Blending Frame- Buffer Frame Buffer Video memory on graphics board that holds image Double-buffering: two separate buffers Draw into one while displaying other, then swap to avoid flicker

16 Pipeline Advantages Only local knowledge of the scene is necessary
Modularity: logical separation of different components Easy to parallelize Earlier stages can already work on new data while later stages still work with previous data Similar to pipelining in modern CPUs But much more aggressive parallelization possible (special purpose hardware!) Important for hardware implementations Only local knowledge of the scene is necessary

17 Pipeline Disadvantages
Limited flexibility Some algorithms would require different ordering of pipeline stages hard to achieve while still preserving compatibility Only local knowledge of scene is available shadows, global illumination difficult

18 3D Scene Representation
Scene is usually approximated by 3D primitives Point Line segment Polygon Polyhedron Cylinder Curved surface Solid object etc.

19 OpenGL Attributes of Graphics Primitives
Color, antialiasing, … Point attributes, Line attributes, Curve attributes, Character attributes

20 OpenGL Attributes of Graphics Primitives
Attributes are any parameters that affect the way graphic primitives are displayed. Basic attributes Color Size Style Fill patterns

21 OpenGL Attributes of Graphics Primitives
Attribute parameter A parameter that affects the way a primitive is to be displayed, ex: color, size. State system / State machine A graphics system that maintains a list for the current values of attributes

22 OpenGL State Variables
All OpenGL state parameters have default values. Set the state once, remains until overwritten Changing the attribute settings Only affects those primitives that are specified after the OpenGL state is changed Lines: blue or orange, dotted or dashed, and fat or thin. State parameters can have more than two states, e.g., colors, styles, etc.

23 OpenGL Color & Gray Scale
Color is a common attribute for all primitives Color information can be stored in two ways 1. RGB color codes 2. Color table Stored Color Values in Frame Buffer 1 2 3 4 5 6 7 Black Blue Green Cyan Red Magenta Yellow White GREEN Displayed Color

24 OpenGL Color & Gray Scale
Color is a common attribute for all primitives Color information can be stored in two ways 1. RGB color codes 2. Color table

25 OpenGL Color Functions
Set color display mode 1. OpenGL RGB and RGBA mode 2. OpenGL Color-Index Mode glutInitDisplayMode ( GLUT_SINGLE | GLUT_RGB ) GLUT_RGBA GLUT_INDEX glColor* (colorComponents); // Select current color glIndexi(196); glutSetColor (index, red, green, blue); // Select current color // Specify color into a table

26 OpenGL Color Functions
OpenGL color blending Combining the color of overlapping objects Blending an object with the background Color-blending function Destination object: Current object in the frame buffer Source object: Other object in the frame buffer glEnable(GL_BLEND); Source glDisable(GL_BLEND); Destination  Blending methods can be performed only in RGB or RGBA mode.

27 OpenGL Color Functions
Blending Factors glColor4f(R, G, B, A), A is a blending factor Source color components are (Rs, Gs, Bs, As) Destination color components are (Rd, Gd, Bd, Ad) Source blending factors are (Sr, Sg, Sb, Sa) Destination blending factors are (Dr, Dg, Db, Da) The new blending color that is then loaded into the frame buffer is calculated as: (SrRs+DrRd, SrGs+DgGd, SbBs+DbBd, SaAs+DaAd) Source Destination

28 OpenGL Color Functions
glBlendFunc (sFactor, dFactor); Default: GL_ONE GL_ZERO (1.0, 1.0, 1.0, 1.0) (0.0, 0.0, 0.0, 0.0) Ex. glBlendFunc(GL_SRC_ALPHA,GL_ONE); Ex: implement it by using glColor4f (0.8, 0.2, 0.2, 0.4); Source Destination

29 OpenGL Example: Blending 1/3
#include <GL/glut.h> void init (void) { glEnable(GL_BLEND); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // (sFactor, dFactor) glClearColor (1.0, 1.0, 1.0, 0.0); //(red, green, blue, alpha) }

30 OpenGL Example: Blending 2/3
void display(void) { glClear (GL_COLOR_BUFFER_BIT); glBegin(GL_TRIANGLES); // Draw triangle glColor4f(1.0, 0.0, 0.0, 0.75); glVertex3f(0, -0.5, 0.0); glVertex3f(0.5, -0.5, 0.0); glVertex3f(0, 1, 0.0); glEnd(); glBegin(GL_POLYGON); // Draw rectangle glColor4f(0.0, 0.0, 1.0, 0.75); glVertex3f (-0.6, -0.6, 0); glVertex3f (0.6, -0.6, 0); glVertex3f (0.6, 0.6, 0); glVertex3f (-0.6, 0.6, 0); glFlush (); }

31 OpenGL Example: Blending 3/3
int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); glutInitWindowSize (600, 400); glutInitWindowPosition (200, 100); glutCreateWindow ("Hello Students"); init(); glutDisplayFunc(display); glutMainLoop(); return 0; }

32 OpenGL Home Work Plot red, green & blue circles overlapping as shown in figure. Reading: HB4, RB

33 OpenGL Point Attributes & Functions
Basic attributes Color Size A multiple of the pixel size (a square) glPointSize (size); // size is the number of pixels

34 OpenGL Line Attributes & Functions
Basic attributes Color Width glLineWidth(width); Style glEnable(GL_LINE_STIPPLE); glLineStippel(repeatFactor, pattern); Other attributes Shade glShadeModel(GL_SMOOTH); How many times each bit is to be repeat 16-bit integer Default: 0xFFFF  Solid line Lower-order bits are applied first

35 OpenGL Line Attributes & Functions
Pixel mask A pattern of binary digits For example, dashed line Inter-dash spacing

36 OpenGL Fill-Area Attribute Functions
OpenGL fill-area routines for convex polygons only. Four steps: Define a fill pattern Invoke the polygon-fill routine Activate the polygon-fill feature Describe the polygons to be filled.

37 OpenGL Example void init(void) { glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH)} void triangle(void) glBegin (GL_TRIANGLES); glColor3f (1.0, 0.0, 0.0); glVertex2f (5.0, 5.0); glColor3f (0.0, 1.0, 0.0); glVertex2f (25.0, 5.0); glColor3f (0.0, 0.0, 1.0); glVertex2f (5.0, 25.0); glEnd(); }

38 OpenGL Polygon Stippling

39 OpenGL Polygon Stippling
byte fly[] = { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x03, (byte) 0x80, (byte) 0x01, (byte) 0xC0, (byte) 0x06, (byte) 0xC0, (byte) 0x03, (byte) 0x60, (byte) 0x04, (byte) 0x60, (byte) 0x06, (byte) 0x20, (byte) 0x04, (byte) 0x30, (byte) 0x0C, (byte) 0x20, (byte) 0x04, (byte) 0x18, (byte) 0x18, (byte) 0x20, (byte) 0x04, (byte) 0x0C, (byte) 0x30, (byte) 0x20, (byte) 0x04, (byte) 0x06, (byte) 0x60, (byte) 0x20, (byte) 0x44, (byte) 0x03, (byte) 0xC0, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x66, (byte) 0x01, (byte) 0x80, (byte) 0x66, (byte) 0x33, (byte) 0x01, (byte) 0x80, (byte) 0xCC, (byte) 0x19, (byte) 0x81, (byte) 0x81, (byte) 0x98, (byte) 0x0C, (byte) 0xC1, (byte) 0x83, (byte) 0x30, (byte) 0x07, (byte) 0xe1, (byte) 0x87, (byte) 0xe0, (byte) 0x03, (byte) 0x3f, (byte) 0xfc, (byte) 0xc0, (byte) 0x03, (byte) 0x31, (byte) 0x8c, (byte) 0xc0, (byte) 0x03, (byte) 0x33, (byte) 0xcc, (byte) 0xc0, (byte) 0x06, (byte) 0x64, (byte) 0x26, (byte) 0x60, (byte) 0x0c, (byte) 0xcc, (byte) 0x33, (byte) 0x30, (byte) 0x18, (byte) 0xcc, (byte) 0x33, (byte) 0x18, (byte) 0x10, (byte) 0xc4, (byte) 0x23, (byte) 0x08, (byte) 0x10, (byte) 0x63, (byte) 0xC6, (byte) 0x08, (byte) 0x10, (byte) 0x30, (byte) 0x0c, (byte) 0x08, (byte) 0x10, (byte) 0x18, (byte) 0x18, (byte) 0x08, (byte) 0x10, (byte) 0x00, (byte) 0x00, (byte) 0x08 };

40 3D Geometric Primitives

41 Rendering Generate an image from geometric primitives Rendering
Raster Image

42 What issues must be addressed by a 3D rendering system?
3D Rendering Example What issues must be addressed by a 3D rendering system?

43 3D Object Representation Polyhedra

44 OpenGL 3D Primitives (GLUT Support)

45 Cube Sphere glutWireCube(GLdouble size) size = length of a side
OpenGL 3D Primitives Cube glutWireCube(GLdouble size) size = length of a side Sphere glutWireSphere(GLdouble radius, GLint nSlices, GLint nStacks) Approximated by polygonal faces nSlices = # of polygons around z-axis nStacks = # of bands along z-axis There are solid counterparts of the wire objects

46 Regular Polyhedron Tetrahedron (4 sided) Hexahedron (6 sided)
OpenGL 3D Primitives Regular Polyhedron Tetrahedron (4 sided) glutWireTetrahedron() Hexahedron (6 sided) glutWireHexahedron() Octahedron (8 sided) glutWireOctahedron() Dodecahedron (12 sided) glutWireDodecahedron() Icosahedron (20 sided) glutWireIcosahedron() Display with center at the origin and with radius (distance from the center of polyhedron to any vertex) equal to Sqrt(3)

47 Cone OpenGL 3D Primitives Axis coincides with the z-axis
glutWireCone(GLdouble baseRad, GLdouble height, GLint nSlices, GLint nStacks) Axis coincides with the z-axis Base rests on xy-plane and extends to +ve z = height baseRad: radius at z = 0 nSlices: The number of subdivisions around the z axis. nStacks: The number of subdivisions along the z axis.

48 Approximated by polygonal faces Teapots glutWireTeapot(GLdouble size)
OpenGL 3D Primitives Torus glutWireTorus(GLdouble inRad, GLdouble outRad, GLint nSlices, GLint nStacks) Approximated by polygonal faces Teapots glutWireTeapot(GLdouble size)

49 Things to do OpenGL practice: HB 2.9

50 References http://www.ugrad.cs.ubc.ca/~cs314/


Download ppt "Rendering Geometric Primitives Reading: HB4, HB8-1 to HB8-6, HK9.7, 11"

Similar presentations


Ads by Google