Presentation is loading. Please wait.

Presentation is loading. Please wait.

Search www.math.sc.chula.ac.th/~jaruloj/C681/6_BB.ppt.

Similar presentations


Presentation on theme: "Search www.math.sc.chula.ac.th/~jaruloj/C681/6_BB.ppt."— Presentation transcript:

1 Search

2 Outline Problem space/ State space Exhaustive search Backtracking
Depth-first search Breadth-first search Backtracking Branch-and-bound Jaruloj Chongstitvatana Search

3 Problem Space or State Space

4 Problem Space General problem statement
Given a problem instance P, find answer A=(a1, a2, …, an) such that the criteria C(A, P) is satisfied. Problem space of P is the set of all possible answers A. Jaruloj Chongstitvatana Search

5 Example: Shortest path
Given a graph G=(V,E), and nodes u and v, find the shortest path between u and v. General problem statement Given a graph G and nodes u and v, find the path (u, n1, n2, …, nk, v), and (u, n1, n2,…, nk, v) is the shortest path between u and v. Problem space Set of all possible path between u and v. {(u, n1, n2, …, nk, v)| ni is in V, for 1ik}. Jaruloj Chongstitvatana Search

6 Example: 0/1 Knapsack Given a set S of n objects, where the object i has value vi and weight wi , and a knapsack with weight capacity C, find the maximum of value of objects in S which can be put in the knapsack. General problem statement Given vi and wi , for 1  i  n , find the set K such that for each i in K, 1  i  n,  vi is maximum while  wi  C. iK iK Problem space Any subset of S. Jaruloj Chongstitvatana Search

7 Example: n Queens Given an nxn board, find the n squares in the board to put n queens so that no pair can attack. General problem statement Find (p1, p2, …, pn) where pi = (xi, yi) is a square on the board, where there is no pair (xi, yi) and (xj, yj) such that xi = xj or yi = yj. Problem space A set of any n positions on the board. Jaruloj Chongstitvatana Search

8 Exhaustive Search

9 Exhaustive Search Generate every possible answer
Test each answer with the constraint to find the correct answer Inefficient because the number of answers in the problem space can be exponential. Examples: Shortest path n! paths to be considered, where n is the number of nodes. 0/1 Knapsack 2n selections, where n is the number of objects. n Queens n2!/n! (n2-n)! Jaruloj Chongstitvatana Search

10 State-Space Tree Let (a1, a2, …, an) be a possible answer.
Suppose ai is either 0 or 1, for 1  i  nใ (?, …, ?) (0, ?, …, ?) (1, ?, …, ?) (0, 0, ?, …, ?) (0, 1, ?, …, ?) (1, 0,?, …, ?) (1, 1, ?, …, ?) (0,0,0, …, ?) (0,0,1, …, ?) (0,1,0, …, ?) (0,1,1, …, ?) Jaruloj Chongstitvatana Search

11 State-Space Tree: Shortest Path
8 (1) 3 5 2 5 2 (1,2) (1,3) 1 1 -6 -1 (1,2,3) (1,2,4) (1,3,4) (1,3,5) 2 2 4 (1,2,3,4) (1,2,3,5) (1,2,4,5) (1,3,4,5) (1,2,3,4,5) Jaruloj Chongstitvatana Search

12 Generating Possible Paths
Let {1,2,3, …, n} be a set of nodes and E[i][j] is the weight of the edge between node i and j. path(p) last = last node in the path p for next = 1 to n do np = p if next is not in np and E[last][next] != 0 then np = np || next path(np) else return Jaruloj Chongstitvatana Search

13 State-Space Tree : 0/1 Knapsack
Given a set of objects o1, …, o5. { } {1} {2} {3} {4} {5} {1,2} {1,3} {1,4} {1,5} {1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4, 5} {1,2,3,4,5} Jaruloj Chongstitvatana Search

14 State-Space Tree : n Queen
Jaruloj Chongstitvatana Search

15 Depth-first Search Traverse the tree from root until a leaf is reached. Then, traverse back up to visited the next unvisited node. depthFirst(v) visited[v] = 1 for each node k adjacent to v do if not visited[k] then depthFirst(k) Jaruloj Chongstitvatana Search

16 0/1 Knapsack: Depth-first Search
Global: maxV=0 maxSack={} DFknapsack(sack, unchosen) for each object p in unchosen do unchosen=unchosen-{p} sack=sack U {p} val=evaluate(sack) if unchosen is empty ► A leaf is reached. then maxV=max(maxV, val) if maxV=val then maxSack=sack return else DFknapsack(sack, unchosen) Jaruloj Chongstitvatana Search

17 Breadth-first Search Traverse the tree from root until the nodes of the same depth are all visited. Then, visited the node in the next level. breadthFirst(v) Q = empty queue enqueue(Q, v) visited[v] = 1 while not empty (Q) do u = dequeue(Q) for each node k adjacent to u do if not visited[k] then visited[k] = true enqueue(Q, k) Jaruloj Chongstitvatana Search

18 0/1 Knapsack: Breadth-first Search
BFknapsack Q = empty queue maxV=0 sack = { } unchosen = set of all objects enqueue(Q, <sack, unchosen>) while not empty (Q) do <sack, unchosen> = dequeue(Q) if unchosen is not empty then for each object p in unchosen do enqueue(Q,<sackU{p}, unchosen-{p}>) else maxV = max(maxV, evaluate(sack)) if maxV=evaluate(sack) then maxSack = sack Jaruloj Chongstitvatana Search

19 Backtracking

20 Backtracking Reduce the search by cutting down some branches in the tree Jaruloj Chongstitvatana Search

21 0/1 Knapsack: Backtracking
{} 0,0 Sack Current weight, current value Node {1} 2,5 {2} 1,4 {3} 3,8 {4} 2,7 {1,2} 3,9 {1,3} 5,13 {1,4} 4,12 {2,3} 4,12 {2,4} 3,11 {3,4} 5,15 object weight value 1 2 5 4 3 8 7 {2,3,4} 6,19 {1,2,3} 6, 17 {1,2,4} 5, 16 Capacity = 5 Jaruloj Chongstitvatana Search

22 0/1 Knapsack: Backtracking
BTknapsack(sack, unchosen) for each object p in unchosen do unchosen=unchosen-{p} if p can be put in sack then sack = sack U {p} ► Backtracking occurs when p cannot be put in sack. val=evaluate(sack) if unchosen is empty ► A leaf is reached. then maxV=max(maxV, val) maxSack=sack return else BTknapsack(sack, unchosen) Jaruloj Chongstitvatana Search

23 Branch-and-Bound

24 Branch-and-bound Use for optimization problems
An optimal solution is a feasible solution with the optimal value of the objective function. Search in state-space trees can be pruned by using bound. Jaruloj Chongstitvatana Search

25 State-Space Tree with Bound
Jaruloj Chongstitvatana Search

26 Branch and Bound From a node N:
If the bound of N is not better than the current overall bound, terminate the search from N. Otherwise, If N is a leaf node If its bound is better than the current overall bound, update the overall bound and terminate the search from N. Otherwise, terminate the search from N. Otherwise, search each child of N. Jaruloj Chongstitvatana Search

27 0/1 Knapsack: Branch-and-Bound
Global: OvBound=0 BBknapsack(sack, unchosen) if bound(sack, unchosen)>OvBound ► Estimated bound can be better than the overall bound. then for each object p in unchosen do unchosen=unchosen-{p} if p can be put in sack then sack = sack U {p} ► Backtracking occurs when p cannot be put in sack. val=evaluate(sack) if unchosen is empty ► A leaf is reached. then maxV = max(maxV, val) maxSack = sack OvBound = max(evaluate(sack), OvBound) return else ► A leaf is not reached. Jaruloj Chongstitvatana Search

28 0/1 Knapsack: Estimated bound
Current value Jaruloj Chongstitvatana Search

29 0/1 Knapsack: Branch-and-bound
{} 20 0,0 Sack estimated bound Current weight, current value Node {1}17 2,5 {2}18 1,4 {3}16 3,8 {4}19 2,7 {1,2}16 3,9 {1,3} 13 5,13 {2,3}15.5 4,12 {2,4}16.3 3,11 {3,4}15 5,15 object weight value ratio 1 2 5 2.5 4 3 8 2.67 7 3.5 {1,2,4} 16 5, 16 Overall bound 16 Capacity = 5 Jaruloj Chongstitvatana Search


Download ppt "Search www.math.sc.chula.ac.th/~jaruloj/C681/6_BB.ppt."

Similar presentations


Ads by Google