Presentation is loading. Please wait.

Presentation is loading. Please wait.

Type Inference with Run-time Logs

Similar presentations


Presentation on theme: "Type Inference with Run-time Logs"— Presentation transcript:

1 Type Inference with Run-time Logs
Ravi Chugh, Ranjit Jhala, Sorin Lerner University of California, San Diego

2 Motivation: Dynamic Languages
Dynamically-typed languages Enable rapid prototyping Facilitate inter-language development Statically-typed languages Prevent certain run-time errors Enable optimized execution Provide checked documentation Many research efforts to combine both Recent popularity of Python, Ruby, and JavaScript has stoked the fire

3 Gradual Type Systems Many attempts at fully static type systems
Often require refactoring and annotation Some features just cannot be statically typed Gradual type systems provide a spectrum Some expressions have types, statically-checked Others are dynamic, fall back on run-time checks Challenges Granularity, guarantees, blame tracking, and ...

4 ... Inference! Goal: migrate programs from dynamic langs
Programmer annotation burden is currently 0 A migration strategy must require ~0 work Even modifying 1-10% LOC in a large codebase can be prohibitive

5 The Challenge: Inference
Goal: practical type system polymorphism def id(x) { return x }; 1 + id(2); “hello” ^ id(“world”); id : ∀X. X → X polymorphism

6 The Challenge: Inference
Goal: practical type system subtyping def succA(x) { return (1 + x.a) }; succA({a=1}); succA({a=1;b=“hi”}); {a:Int;b:Str} <: {a:Int} subtyping polymorphism

7 The Challenge: Inference
Goal: practical type system bounded quantification def incA(x) { x.a := 1 + x.a; return x }; incA({a=1}).a; incA({a=1;b=“hi”}).b; bounded quantification subtyping incA : ∀X<:{a:Int}. X → X polymorphism

8 The Challenge: Inference
Goal: practical type system dynamic n := if b then else “bad”; m := if b then n else 0; dynamic bounded quantification n : dynamic subtyping polymorphism

9 The Challenge: Inference
Goal: practical type system other features... dynamic bounded quantification subtyping polymorphism

10 The Challenge: Inference
Goal: practical type system other features... dynamic bounded quantification subtyping polymorphism System ML ✓

11 The Challenge: Inference
Goal: practical type system other features... dynamic bounded quantification subtyping System F ✗ polymorphism

12 The Idea Use run-time executions to help inference
Program may have many valid types But particular execution might rule out some Dynamic language programmers test a lot Use existing test suites to help migration

13 Route: Inference w/ Run-time Logs
omit higher-order functions System E≤ bounded quantification System E subtyping + polymorphism

14 omit higher-order functions
First Stop omit higher-order functions System E≤ bounded quantification System E subtyping + polymorphism System E−

15 E− Type System Expression and function types
τ ::= | Int | Bool | ... | {fi:τi} | X σ ::= ∀Xi. τ1 → τ2 Typing rules prevent field-not-found and primitive operation errors

16 def id (a) { a } def id[A] (a:A) { a } : ∀A. A → A def id[] (a:Int) { a } : Int → Int def id[B,C] (x:B*C) { a } : ∀B,C. B*C → B*C Infinitely many valid types for id...

17 ... but ∀A. A → A is the principal type
Int → Int ∀B,C. B*C → B*C

18 ... but ∀A. A → A is the principal type
More general than every other type Allows id to be used in most different ways ∀A. A → A Int → Int ∀B,C. B*C → B*C ∀B. B*B → B*B Int*Bool → Int*Bool Int*Int → Int*Int

19 def readF[F] (o:{f:F}) { o.f } : ∀F. {f:F} → F This is the best type
def readF (o) { o.f } def readF[F] (o:{f:F}) { o.f } : ∀F. {f:F} → F This is the best type ∀F. {f:F} → F {f:Int} → Int ∀F,G. {f:F;g:G} → F ∀G. {f:Int;g:G} → Int

20 ∀F,G. {f:F;g:G} → {f:F;g:G}
def hasF (x) { let _ = x.f in x } Two valid types: Neither is better than the other ∀F. {f:F} → {f:F} ∀F,G. {f:F;g:G} → {f:F;g:G} allows hasF({f=1}) allows hasF({f=1;g=2}).g

21 E− Static Type Inference
E− lacks principal types Cannot assign type just from definition Need to consider calling contexts Our approach is iterative Impose minimal constraints on argument If a calling context requires an additional field to be tracked, backtrack and redo the function

22 Iterative Inference – Example 1
def hasF(x) { let _ = x.f in x } def main1() { hasF({f=1}) } Constraints on x Solution X = {f:F}x X <: {f:F} “this record type came from the program variable x” hasF : ∀F. {f:F} → {f:F}x 22

23 Iterative Inference – Example 2
✗* def hasF(x) { let _ = x.f in x } def main2() { let z = {f=1;g=2} in hasF(z).g } hasF(z) : {f:Int}x so can’t project on g, unless... Constraints on x Solution X = {f:F}x X <: {f:F} X <: {g:G} hasF : ∀F. {f:F} → {f:F}x 23

24 Iterative Inference – Example 2
def hasF(x) { let _ = x.f in x } def main2() { let z = {f=1;g=2} in hasF(z).g } Constraints on x Solution X = {f:F;g:G}x X <: {f:F} X <: {g:G} hasF : ∀F,G. {f:F;g:G} → {f:F;g:G}x 24

25 Iterative Inference – Example 3
def hasF(x) { let _ = x.f in x } def main3() { let z = {f=1;g=2} in hasF(z).g; hasF({f=1}) } Constraints on x Solution X = {f:F;g:G}x X <: {f:F} X <: {g:G} hasF : ∀F,G. {f:F;g:G} → {f:F;g:G}x 25

26 Iterative Inference – Example 3
def hasF(x) { let _ = x.f in x } def main3() { let z = {f=1;g=2} in hasF(z).g; hasF({f=1}) } Constraints on x Solution X = {f:F;g:G}x X <: {f:F} X <: {g:G} hasF : ∀F,G. {f:F;g:G} → {f:F;g:G}x 26

27 E− Type Inference with Run-time Logs
Evaluation can log caller-induced constraints Wrap all values with sets of type variables When a value passed to arg x, add Xx tag When a value with tag Xx.l projected on field f, record Xx.l <: {f : Xx.l.f} Iteration 0 of modified inference looks in log for caller-induced constraints 27

28 Caller-induced constraint
def hasF(x) { let _ = x.f in x } def main2() { let z = {f=1;g=2} in hasF(z).g } Evaluation main2() ⇒ let z = {f=1;g=2} in hasF(z).g ⇒ let z = [{f=1;g=2},{}] in hasF(z).g ⇒ hasF([{f=1;g=2},{Xx}]).g ⇒ (let _ = [{f=1;g=2},{Xx}].f in [{f=1;g=2},{Xx}]).g ⇒ (let _ = [1,{Xx.f}] in [{f=1;g=2},{Xx}]).g ⇒ [{f=1;g=2},{Xx}].g ⇒ [2,{Xx.g}] Run-time log Xx <: {f : Xx.f} Caller-induced constraint Xx <: {g : Xx.g} 28

29 System E− Summary Fully static inference needs to iterate, but can optimize with run-time information Can wrap run-time values with sets of type variables and record field read constraints If all expressions executed, then log contains all caller-induced constraints no need for iteration

30 Next Stop System E≤ System E System E System E− bounded quantification
subtyping + polymorphism System E−

31 If-expressions Type is a supertype of branch types if b then 1 else 2
: Int if b then 1 else true : Top if b then {f=1; g=“”} else {f=2; h=true} : {f:Int} if b then {f=“”} else {f=true} : {f:Top}

32 Four valid incomparable types:
def choose (y,z) { if1 y.n > 0 then y else z } Four valid incomparable types: ∀A. {n:Int}*{} → {} ∀A. {n:Int}*{n:Top} → {n:Top} {n:Int}*{n:Int} → {n:Int} ∀B. {n:Int;b:B}*{n:Int;b:B} → {n:Int;b:B}

33 Iterative Inference – Example
def choose(y,z) { if1 y.n > 0 then y else z } def main4() { let t = choose({n=1},{n=2}) in succ t.n } Constraints Y <: {n:N} N = Int choose : {n:Int}*{} → {}1 Iteration 0 “this record type came from the if-expression 1” 33 33

34 t : {}1 so can’t project on n
Iterative Inference – Example def choose(y,z) { if1 y.n > 0 then y else z } def main4() { let t = choose({n=1},{n=2}) in succ t.n } ✗* t : {}1 so can’t project on n Constraints Y <: {n:N} N = Int Z <: {n:M} choose : {n:Int}*{} → {}1 Iteration 0 choose : {n:Int}*{n:Top1.n} → {n:Top1.n}1 Iteration 1 34 34

35 ✗* Iterative Inference – Example
def choose(y,z) { if1 y.n > 0 then y else z } def main4() { let t = choose({n=1},{n=2}) in succ t.n } ✗* t.n : Top1.n so can’t add Constraints Y <: {n:N} N = Int Z <: {n:M} N = M choose : {n:Int}*{} → {}1 Iteration 0 choose : {n:Int}*{n:Top1.n} → {n:Top1.n}1 Iteration 1 choose : {n:Int}*{n:Int} → {n:Int}1 Iteration 2 35 35

36 ✓ Iterative Inference – Example
def choose(y,z) { if1 y.n > 0 then y else z } def main4() { let t = choose({n=1},{n=2}) in succ t.n } Constraints Y <: {n:N} N = Int Z <: {n:M} N = M choose : {n:Int}*{} → {}1 Iteration 0 choose : {n:Int}*{n:Top1.n} → {n:Top1.n}1 Iteration 1 choose : {n:Int}*{n:Int} → {n:Int}1 Iteration 2 36 36

37 System E Summary Lacks principal types Has iterative inference
Use subscripts for record types from if-exps Run-time info removes iteration, as before

38 Last Stop System E≤ System E≤ System E System E−
bounded quantification System E subtyping + polymorphism System E−

39 ∀F,G. {f:F;g:G} → {f:F;g:G}
def hasF (x) { let _ = x.f in x } Now there is a best type for hasF Each call site can instantiate X differently ∀F, X<:{f:F}. X → X ∀F. {f:F} → {f:F} ∀F,G. {f:F;g:G} → {f:F;g:G} 39

40 {n:Int}*{n:Int} → {n:Int}
def choose (y,z) { if1 y.n > 0 then y else z } {n:Int}*{n:Int} → {n:Int} ∀B. {n:Int;b:B}*{n:Int;b:B} → {n:Int;b:B} {n:Int}*{} → {} ∀Y<:{n:Int}. Y * Y → Y

41 choose({n=1,b=true}, {n=2,b=false}).b
def choose (y,z) { if1 y.n > 0 then y else z } {n:Int}*{} → {} ∀Y<:{n:Int}. Y * Y → Y allows choose({n=1},{}) allows choose({n=1},{n=2}).n and choose({n=1,b=true}, {n=2,b=false}).b Neither type is better

42 Sharing Bounded Type Variables
E≤ lacks principal types Can type variables for y and z be shared? If their separate bounds are compatible Y<:{n:Int} and Z<:{} can be combined to {n:Int} Y<:{n:Int} and Z<:{n:Bool} cannot be combined 42

43 E≤ Inference For all program variables returned by an if:
If bounds not compatible, use separate variables Otherwise, use same type variable All call sites well-typed Otherwise, restart and keep vars separate Using separate variables is just like System E Now there is a second cause for restarting 43

44 E≤ Inference with Run-time Logs
Know when to share from run-time info? Can’t determine if all call sites well-typed even if actual has a field, its static type might not Can determine if some call site is not if an actual doesn’t have field, static type will not So can eliminate some iteration but not all 44

45 System E≤ Summary Lacks principal types
Primary new challenge: determining when to use same type variable for y and z Static inference has new source of iteration Cannot be eliminated with run-time info

46 Summary System E≤ System E System E− bounded quantification subtyping
+ polymorphism System E−

47 Summary Iterative static inference for E≤
first-order functions, records polymorphism, subtyping bounded quantification Run-time information improves algorithms reduces worst-case complexity (not counting overhead for instrumented eval)

48 Future Work Direction #0: Prove formal properties for E≤
Direction #1: Extend E≤ recursion, recursive types, dynamic, classes, ... is there still static inference? how can run-time info help? can existing programs be encoded in E? Direction #2: Inference for F does inference become easier with run-time info? if so, extend with more features if not, heuristic-based approaches for migration

49 Goseichou arigatou gozaimashita!
Original photo by Alaskan Dude Released under Creative Commons Attribution 2.0 Generic License

50 Extra Slides

51 Typed vs. Untyped Syntax
Function definitions Function calls Program is sequence of function definitions def y[A1,...,An](x:τ){ e } def y(x){ e’ } y[τ1,...,τn](e) y(e’)

52 Bounded Quantification
def y[ A1<:τ1 , ... , An<:τn ] (x:τ) { e } Type parameters now have bounds

53 ∀Y,Z. (Y<:{n:Int}, Y<:Z) => Y*Z → Z
Bounded Quantification With arbitrary subtyping constraints, choose has a principal type ∀Y,Z. (Y<:{n:Int}, Y<:Z) => Y*Z → Z 53

54 Related Work Complete inference for ML + records [Remy 89]
limited by ML polymorphism and fields cannot be forgotten Type inference for F is undecidable [Wells 94] Local type inference for F [Pierce et al, Odersky et al, et al] require top-level annotations, try to fill in rest even partial inference for F undecidable [Pfenning 88] Type checking for F≤ is undecidable [Pierce 91]

55 Related Work Static type systems for dynamic languages
type systems for JavaScript [Thiemann 05, et al] Typed Scheme [Tobin-Hochstadt and Felleisen 08] Diamondback Ruby [Furr et al 09 11] Gradual type systems functions [Thatte 90, Cartwright and Fagan 91, Siek and Taha 06] objects [Siek and Taha 07, Wrigstad et al 10, Bierman et al 10] Coercion insertion [Henglein/Rehof 95, Siek/Vachharajani 08] do not deal with records


Download ppt "Type Inference with Run-time Logs"

Similar presentations


Ads by Google