Download presentation
Presentation is loading. Please wait.
1
Gaussian (Normal) Distribution: Brief, More Details & Some Applications
2
Gaussian (Normal) Distribution
The Gaussian Distribution is one of the most used distributions in all of science. It is also called the “bell curve” or the Normal Distribution. If this is the “Normal Distribution”, logically, shouldn’t there also be an “Abnormal Distribution”?
3
Johann Carl Friedrich Gauss (1736–1806, Germany)
Mathematician, Astronomer, Physicist. Sometimes called the “Prince of Mathematics" (?) A child prodigy in math. (Do you have trouble believing some of the following? I do!) Age 3: Informed his father of a mistake in a payroll calculation & gave the correct answer!! Age 7: His teacher gave a problem of summing all integers to his class to keep them busy. Gauss quickly wrote the correct answer 5050 on his slate!! Whether or not you believe all of this, it is 100% true that he Made a HUGE number of contributions to Mathematics, Physics, & Astronomy!!
4
Johann Carl Friedrich Gauss
Genius! Made a HUGE number of contributions to Math, Physics, & Astronomy 1. Proved the Fundamental Theorem of Algebra, that every polynomial has a root of the form a+bi. 2. Proved the fundamental Theorem of Arithmetic, that every natural number can be represented as a product of primes in only one way. 3. Proved that every number is the sum of at most 3 triangular numbers. 4. Developed the method of least squares fitting & many other methods in statistics & probability. 5. Proved many theorems of integral calculus, including the divergence theorem (when applied to the E field, it is what is called Gauss’s Law). 6. Proved many theorems of number theory. 7. Made many contributions to the orbital mechanics of the solar system. 8. Made many contributions to Non-Euclidean geometry 9. One of the first to rigorously study the Earth’s magnetic field
5
Normal or Gaussian Distribution It is Symmetric. It’s Mean, Median,
& Mode are Equal
6
A 2-Dimensional Gaussian
7
Gaussian or Normal Distribution
It is a symmetrical, bell-shaped curve. It has a point of inflection at a position 1 standard deviation from the mean. Formula: f (X ) x
8
The Normal Distribution
= Note the constants! e = This is a bell shaped curve with different centers & spreads depending on &
9
The negative exponent means that big |z|
There are only 2 variables that determine the curve shape: The mean & The variance . The rest are constants. For “z scores” ( = 0, = 1), the equation becomes: The negative exponent means that big |z| values give small function values in the tails.
10
Normal Distribution It’s a probability function, so no matter what
the values of and , it must integrate to 1!
11
The Normal Distribution is Defined by its Mean & Standard Deviation.
= 2 = Standard Deviation = l
12
Normal Distribution Can take on an infinite number of possible values.
The probability of any one of those values occurring is essentially zero. Curve has area or probability = 1
13
The standard normal distribution.
7-6 A normal distribution with a mean = 0 & a standard deviation = 1 is called The standard normal distribution. Z Value: The distance between a selected value, designated X, and the population mean , divided by the population standard deviation,
14
7-7 Example 1 The monthly incomes of recent MBA graduates in a large corporation are normally distributed with a mean of $2000 and a standard deviation of $200. What is the Z value for an income of $2200? An income of $1700? For X = $2200, Z= ( )/200 = 1. For X = $1700, Z = ( )/200 = -1.5 A Z value of 1 indicates that the value of $2200 is 1 standard deviation above the mean of $2000, while a Z value of $1700 is 1.5 standard deviation below the mean of $2000.
15
Probabilities Depicted by Areas Under the Curve
Total area under the curve is 1 The area in red is equal to p(z > 1) The area in blue is equal to p(-1< z <0) Since the properties of the normal distribution are known, areas can be looked up on tables or calculated on a computer.
16
Probability of an Interval
17
Cumulative Probability
18
Given any positive value for z, the corresponding
probability can be looked up in standard tables. A table will give this probability Given positive z The probability found using a table is the probability of having a standard normal variable between 0 & the given positive z.
19
Areas Under the Standard Normal Curve
20
Areas and Probabilities
The Table shows cumulative normal probabilities. Some selected entries: z F(z) .50 .3 .62 1 .84 .1 .54 .4 .66 2 .98 .2 .58 .5 .69 3 .99 About 54 % of scores fall below z of .1. About 46 % of scores fall below a z of -.1 (1-.54 = .46). About 14% of scores fall between z of 1 and 2 ( ).
21
Areas Under the Normal Curve
7-9 Areas Under the Normal Curve About 68 percent of the area under the normal curve is within 1 standard deviation of the mean: - < < About 95 percent is within 2 standard deviations of the mean: -2 < < 2 About percent is within 3 standard deviations of the mean: -3 < < 3
22
Areas Under the Normal Curve
- 5 . 4 3 2 1 x f ( r a l i t b u o n : m = , s2 7-10 Areas Under the Normal Curve Between: % % % Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 1999
23
Key Areas Under the Curve
For normal distributions + 1 ~ 68% + 2 ~ 95% + 3 ~ 99.9%
24
“68-95-99.7 Rule” 68% of the data 95% of the data 99.7% of the data
SAY: within 1 standard deviation either way of the mean within 2 standard deviations of the mean within 3 standard deviations either way of the mean WORKS FOR ALL NORMAL CURVES NO MATTER HOW SKINNY OR FAT 95% of the data 99.7% of the data
25
68.26 -95.44-99.74 Rule For a Normally distributed variable:
> 68.26% of all possible observations lie within one standard deviation on either side of the mean (between m-s and m+s). 2. > 95.44% of all possible observations lie within two standard deviations on either side of the mean (between m-2s and m+2s). 3. > 99.74% of all possible observations lie within three standard deviations on either side of the mean (between m-3s and m+3s).
26
Using the unit normal (z), we can find areas and probabilities for any normal distribution.
Suppose X = 120, =100, =10. Then z = ( )/10 = 2. About 98 % of cases fall below a score of 120 if the distribution is normal. In the normal, most (95%) are within 2 of the mean. Nearly everybody (99%) is within 3 of the mean.
27
Rule
28
Rule in Math terms…
29
7-11 Example 2 The daily water usage per person in New Providence, New Jersey is normally distributed with a mean of 20 gallons and a standard deviation of 5 gallons. About 68% of the daily water usage per person in New Providence lies between what two values? That is, about 68% of the daily water usage will lie between 15 and 25 gallons.
30
Normal Approximation to the Binomial
7-18 Using the normal distribution (a continuous distribution) as a substitute for a binomial distribution (a discrete distribution) for large values of n seems reasonable because as n increases, a binomial distribution gets closer and closer to a normal distribution. The normal probability distribution is generally deemed a good approximation to the binomial probability distribution when n and n - 1 are both greater than 5.
31
Binomial Distribution for n = 3 & n = 20
7-20 Binomial Distribution for n = 3 & n = 20
32
Central Limit Theorem Flip coin N times
Each outcome has an associated random variable Xi (= 1, if heads, otherwise 0) Number of heads: NH is a random variable NH = x1 + x2 + …. + xN
33
Central Limit Theorem Coin flip problem. Probability function of NH
P(Head) = 0.5 (fair coin) N = 5 N = 10 N = 40
34
Example: N uniform [0,1] random variables.
Central Limit Theorem The distribution of the sum of N random variables becomes increasingly Gaussian as N grows. Example: N uniform [0,1] random variables.
35
112.3 127.8 143.3
36
Normal Distribution % Probability / %
37
Why are normal distributions so important?
Many dependent variables are commonly assumed to be normally distributed in the population If a variable is approximately normally distributed we can make inferences about values of that variable Example: Sampling distribution of the mean So what? Remember the Binomial distribution With a few trials we were able to calculate possible outcomes and the probabilities of those outcomes
38
Why are normal distributions so important?
Remember the Binomial distribution With a few trials we were able to calculate possible outcomes and the probabilities of those outcomes Now try it for a continuous distribution with an infinite number of possible outcomes. Yikes! The normal distribution and its properties are well known, and if our variable of interest is normally distributed, we can apply what we know about the normal distribution to our situation, and find the probabilities associated with particular outcomes.
39
Since we know the shape of the normal curve, we can calculate the area under the curve
The percentage of that area can be used to determine the probability that a given value could be pulled from a given distribution. The area under the curve tells us about the probability- in other words we can obtain a p-value for our result (data) by treating it as a normally distributed data set.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.