Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 11 Cell Communication

Similar presentations


Presentation on theme: "Chapter 11 Cell Communication"— Presentation transcript:

1 Chapter 11 Cell Communication
11.1 External signals are converted into responses within the cell Chapter 11 Cell Communication

2 Cell-to-cell communication is essential for multicellular organisms
Fig. 11-1 Figure 11.1 How do the effects of Viagra (multicolored) result from its inhibition of a signaling-pathway enzyme (purple)? Figure 11.1 How do the effects of Viagra (multicolored) result from its inhibition of a signaling-pathway enzyme (purple)? Cell-to-cell communication is essential for multicellular organisms

3 Evolution of Cell Signaling
A signal transduction pathway is a series of steps by which a signal on a cell’s surface is converted into a specific cellular response Signal transduction pathways convert signals on a cell’s surface into cellular responses Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

4 Yeast cell, mating type a Yeast cell, mating type 
Fig. 11-2  factor Receptor 1 Exchange of mating factors a a factor Yeast cell, mating type a Yeast cell, mating type  2 Mating a Figure 11.2 Communication between mating yeast cells New a/ cell a/ 3

5 Local and Long-Distance Signaling
Cells in a multicellular organism communicate by chemical messengers Animal and plant cells have cell junctions that directly connect the cytoplasm of adjacent cells In local signaling, animal cells may communicate by direct contact, or cell-cell recognition Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

6 Gap junctions between animal cells Plasmodesmata between plant cells
Fig. 11-4 Plasma membranes Gap junctions between animal cells Plasmodesmata between plant cells (a) Cell junctions Figure 11.4 Communication by direct contact between cells (b) Cell-cell recognition

7 In many other cases, animal cells communicate using local regulators, messenger molecules that travel only short distances In long-distance signaling, plants and animals use chemicals called hormones Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

8 Figure 11.5 Local and long-distance cell communication in animals
Local signaling Long-distance signaling Target cell Electrical signal along nerve cell triggers release of neurotransmitter Endocrine cell Blood vessel Neurotransmitter diffuses across synapse Secreting cell Secretory vesicle Hormone travels in bloodstream to target cells Local regulator diffuses through extracellular fluid Target cell is stimulated Target cell Figure 11.5 Local and long-distance cell communication in animals (a) Paracrine signaling (b) Synaptic signaling (c) Hormonal signaling

9 The Three Stages of Cell Signaling: A Preview
Earl W. Sutherland worked with epinephrine and suggested that cells receiving signals went through three processes: Reception: the target cell’s detection of a signal molecule coming from outside the cell Transduction: the conversion of the signal to a form that can bring about a specific response Response: the specific cellular response to the signal molecule Animation: Overview of Cell Signaling Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

10 Plasma membrane 1 Reception Receptor Signaling molecule 1
Fig EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 1 Reception Receptor Figure 11.6 Overview of cell signaling Signaling molecule

11 Plasma membrane 1 Reception Transduction Receptor Signaling molecule 1
Fig EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 1 Reception 2 Transduction Receptor Relay molecules in a signal transduction pathway Figure 11.6 Overview of cell signaling Signaling molecule

12 Plasma membrane 1 Reception Transduction Response Receptor Activation
Fig EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 Reception 2 Transduction 3 Response Receptor Activation of cellular response Relay molecules in a signal transduction pathway Figure 11.6 Overview of cell signaling Signaling molecule

13 Chapter 11 Cell communication
Concept 11.2: Reception: A signal molecule binds to a receptor protein, causing it to change shape Chapter 11 Cell communication

14 Receptors can be found in 2 places:
The binding between a signal molecule (ligand) and receptor is highly specific A shape change in a receptor is often the initial transduction of the signal Receptors can be found in 2 places: Intracellular receptors: found inside membrane, the signal has to cross the membrane (hydrophobic) Plasma membrane receptors: bind to water- soluble ligands Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

15 Receptors in the Plasma Membrane
There are three main types of membrane receptors: G protein-coupled receptors Receptor tyrosine kinases Ion channel receptors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

16 A G protein-coupled receptor is a plasma membrane receptor that works with the help of a G protein
The G protein acts as an on/off switch: If GDP is bound to the G protein, the G protein is inactive Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

17 Figure 11.7 Membrane receptors—G protein-coupled receptors, part 2
Fig. 11-7b Plasma membrane G protein-coupled receptor Inactive enzyme Activated receptor Signaling molecule GDP G protein (inactive) Enzyme GDP GTP CYTOPLASM 1 2 Activated enzyme Figure 11.7 Membrane receptors—G protein-coupled receptors, part 2 GTP GDP P i Cellular response 3 4

18 Receptor tyrosine kinases are membrane receptors that attach phosphates to tyrosines
A receptor tyrosine kinase can trigger multiple signal transduction pathways at once (key difference between receptor tyrosine kinases and G-protein coupled receptors) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

19 Fully activated receptor tyrosine kinase
Fig. 11-7c Signaling molecule (ligand) Ligand-binding site Signaling molecule  Helix Tyr Tyr Tyrosines Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Receptor tyrosine kinase proteins Dimer CYTOPLASM 1 2 Activated relay proteins Figure 11.7 Membrane receptors—receptor tyrosine kinases Cellular response 1 Tyr Tyr P Tyr Tyr P Tyr Tyr P P Tyr Tyr P Tyr Tyr P Tyr Tyr P P Cellular response 2 Tyr Tyr P Tyr Tyr P Tyr P Tyr P 6 ATP 6 ADP Activated tyrosine kinase regions Fully activated receptor tyrosine kinase Inactive relay proteins 3 4

20 A ligand-gated ion channel receptor acts as a gate when the receptor changes shape
When a signal molecule binds as a ligand to the receptor, the gate allows specific ions, such as Na+ or Ca2+, through a channel in the receptor Regulates the flow of specific ions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

21 1 Signaling molecule (ligand) Gate closed Ions Plasma membrane
Fig. 11-7d 1 Signaling molecule (ligand) Gate closed Ions Plasma membrane Ligand-gated ion channel receptor 2 Gate open Cellular response Figure 11.7 Membrane receptors—ion channel receptors 3 Gate closed

22 Intracellular Receptors
Some receptor proteins are intracellular, found in the cytosol or nucleus of target cells Small or hydrophobic chemical messengers can readily cross the membrane and activate receptors Examples of hydrophobic messengers are the steroid and thyroid hormones of animals An activated hormone-receptor complex can act as a transcription factor, turning on specific genes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

23 Hormone (testosterone) Plasma membrane Receptor protein DNA NUCLEUS
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM

24 Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM

25 Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM

26 Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS CYTOPLASM

27 Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS New protein CYTOPLASM

28 Chapter 11 Cell Communication
Concept 11.3: Transduction: Cascades of molecular interactions relay signals from receptors to target molecules in the cell Chapter 11 Cell Communication

29 Signal transduction usually involves multiple steps
Multistep pathways can amplify a signal: A few molecules can produce a large cellular response Multistep pathways provide more opportunities for coordination and regulation of the cellular response Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

30 Signal Transduction Pathways
The molecules that relay a signal from receptor to response are mostly proteins Like falling dominoes, the receptor activates another protein, which activates another, and so on, until the protein producing the response is activated At each step, the signal is transduced into a different form, usually a shape change in a protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

31 Protein Phosphorylation and Dephosphorylation
In many pathways, the signal is transmitted by a cascade of protein phosphorylations Protein kinases transfer phosphates from ATP to protein, a process called phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

32 Protein phosphatases remove the phosphates from proteins, a process called dephosphorylation
This phosphorylation and dephosphorylation system acts as a molecular switch, turning activities on and off Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

33 Phosphorylation cascade
Fig. 11-9 Signaling molecule Receptor Activated relay molecule Inactive protein kinase 1 Active protein kinase 1 Inactive protein kinase 2 ATP Phosphorylation cascade ADP Active protein kinase 2 P PP P i Figure 11.9 A phosphorylation cascade Inactive protein kinase 3 ATP ADP Active protein kinase 3 P PP P i Inactive protein ATP ADP P Active protein Cellular response PP P i

34 Small Molecules and Ions as Second Messengers
The extracellular signal molecule that binds to the receptor is a pathway’s “first messenger” Second messengers are small, nonprotein, water-soluble molecules or ions that spread throughout a cell by diffusion Second messengers participate in pathways initiated by G protein-coupled receptors and receptor tyrosine kinases Cyclic AMP and calcium ions are common second messengers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

35 Cyclic AMP (cAMP) is one of the most widely used second messengers
Fig Cyclic AMP (cAMP) is one of the most widely used second messengers Adenylyl cyclase, an enzyme in the plasma membrane, converts ATP to cAMP in response to an extracellular signal Adenylyl cyclase Phosphodiesterase Pyrophosphate P P i ATP cAMP AMP Figure Cyclic AMP

36 Figure 11.11 cAMP as second messenger in a G-protein-signaling pathway
First messenger Adenylyl cyclase G protein G protein-coupled receptor GTP ATP Second messenger cAMP Figure cAMP as second messenger in a G-protein-signaling pathway Protein kinase A Figure cAMP as second messenger in a G-protein-signaling pathway Cellular responses

37 Calcium Ions and Inositol Triphosphate (IP3)
Calcium ions (Ca2+) act as a second messenger in many pathways Calcium is an important second messenger because cells can regulate its concentration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

38 A signal relayed by a signal transduction pathway may trigger an increase in calcium in the cytosol
Pathways leading to the release of calcium involve inositol triphosphate (IP3) and diacylglycerol (DAG) as additional second messengers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

39 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein
Fig EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ CYTOSOL

40 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein
Fig EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ Ca2+ (second messenger) CYTOSOL

41 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein
Fig EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Various proteins activated Cellular responses Ca2+ Ca2+ (second messenger) CYTOSOL

42 Chapter 11 Cell Communication
Concept 11.4: Response: Cell signaling leads to regulation of transcription or cytoplasmic activities Chapter 11 Cell Communication

43 Nuclear and Cytoplasmic Responses
Ultimately, a signal transduction pathway leads to regulation of one or more cellular activities The response may occur in the cytoplasm or may involve action in the nucleus Many signaling pathways regulate the synthesis of enzymes or other proteins, usually by turning genes on or off in the nucleus The final activated molecule may function as a transcription factor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

44 Growth factor Reception Receptor Phosphorylation cascade Transduction
Fig Growth factor Reception Receptor Phosphorylation cascade Transduction CYTOPLASM Inactive transcription factor Active transcription factor Figure Nuclear responses to a signal: the activation of a specific gene by a growth factor Response P DNA Gene NUCLEUS mRNA

45 Other pathways regulate the activity of enzymes
Fig Reception Binding of epinephrine to G protein-coupled receptor (1 molecule) Transduction Other pathways regulate the activity of enzymes Inactive G protein Figure Cytoplasmic response to a signal: the stimulation of glycogen breakdown by epinephrine Active G protein (102 molecules) Inactive adenylyl cyclase Active adenylyl cyclase (102) ATP Cyclic AMP (104) Inactive protein kinase A Active protein kinase A (104) Figure Cytoplasmic response to a signal: the stimulation of glycogen breakdown by epinephrine Inactive phosphorylase kinase Active phosphorylase kinase (105) Inactive glycogen phosphorylase Active glycogen phosphorylase (106) Response Glycogen Glucose-1-phosphate (108 molecules)

46 RESULTS CONCLUSION Fig. 11-16
Signaling pathways can also affect the physical characteristics of a cell, for example, cell shape Wild-type (shmoos) ∆Fus3 ∆formin CONCLUSION Mating factor 1 Shmoo projection forming G protein-coupled receptor Formin P Fus3 Actin subunit Figure How do signals induce directional cell growth in yeast? GTP P GDP 2 Phosphory- lation cascade Formin Formin P 4 Microfilament Fus3 Fus3 P 5 3

47 Fine-Tuning of the Response
Multistep pathways have two important benefits: Amplifying the signal (and thus the response) At each step, the number of activated products is much greater than in the preceding step Contributing to the specificity of the response Different kinds of cells have different collections of proteins and these allow cells to detect and respond to different signals The same signal can have different effects in cells with different proteins and pathways Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

48 Fig. 11-17 Figure 11.17 The specificity of cell signaling Signaling
molecule Receptor Relay molecules Response 1 Response 2 Response 3 Cell A. Pathway leads to a single response. Cell B. Pathway branches, leading to two responses. Figure The specificity of cell signaling Activation or inhibition Response 4 Response 5 Cell C. Cross-talk occurs between two pathways. Cell D. Different receptor leads to a different response.

49 Signaling Plasma molecule membrane Receptor Three different protein
Fig Signaling molecule Plasma membrane Receptor Three different protein kinases Figure A scaffolding protein Scaffolding protein Scaffolding proteins are large relay proteins to which other relay proteins are attached Scaffolding proteins can increase the signal transduction efficiency by grouping together different proteins involved in the same pathway

50 Chapter 11 Cell Communication
Concept 11.5: Apoptosis (programmed cell death) integrates multiple cell- signaling pathways Chapter 11 Cell Communication

51 Apoptosis is programmed or controlled cell suicide
A cell is chopped and packaged into vesicles that are digested by scavenger cells Apoptosis prevents enzymes from leaking out of a dying cell and damaging neighboring cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

52 Fig Figure Apoptosis of human white blood cells 2 µm

53 Apoptotic Pathways and the Signals That Trigger Them
Caspases are the main proteases (enzymes that cut up proteins) that carry out apoptosis Apoptosis can be triggered by: An extracellular death-signaling ligand DNA damage in the nucleus Protein misfolding in the endoplasmic reticulum Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

54 Apoptosis evolved early in animal evolution and is essential for the development and maintenance of all animals Apoptosis may be involved in some diseases (for example, Parkinson’s and Alzheimer’s); interference with apoptosis may contribute to some cancers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

55 Figure 11.21 Effect of apoptosis during paw development in the mouse
Interdigital tissue 1 mm Figure Effect of apoptosis during paw development in the mouse

56 Reception Transduction Response Receptor Activation of cellular
Fig. 11-UN1 1 Reception 2 Transduction 3 Response Receptor Activation of cellular response Relay molecules Signaling molecule

57


Download ppt "Chapter 11 Cell Communication"

Similar presentations


Ads by Google