Download presentation
Presentation is loading. Please wait.
1
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona Hock-Seng Goh, Shufang Su Work in progress
2
Outline Twin Higgs Model Collider phenomenology Twin Higgs mechanism
- Twin Higgs Model Twin Higgs mechanism Left-right Twin Higgs model New particles and model parameters Collider phenomenology Heavy top quark Heavy gauge bosons Higgses S. Su
3
Twin Higgs mechanism Mirror symmetry Left-right symmetry
Higgs as pseudo-Goldstone boson of a global symmetry Its mass is protected against radiative corrections Little Higgs mechanism: collective symmetry breaking Twin Higgs mechanism: discrete symmetry Mirror symmetry Type IA TH: Chacko, Goh, Harnik, hep-ph/ Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/ Left-right symmetry Type II TH: Chacko, Goh, Harnik, hep-ph/ S. Su
4
SU(2)L SU(2)R U(1)B-L SU(2)LU(1)Y
Left-right Twin Higgs model - Global U(4) , with subgroup SU(2)L SU(2)R U(1)B-L gauged Left-right symmetry: gL=gR (yL=yR) A linear realization SM Higgs doublet EWSB SM neutral Higgs: H 3 eaten by heavy gauge bosons U(4) U(3) SU(2)L SU(2)R U(1)B-L SU(2)LU(1)Y 7 GB S. Su
5
Twin Higgs mechanism - Quadratic divergence forbidden by left-right symmetry gL=gR=g U(4) invariant, does not contribute to the mass of GB Non-linear realization Log contribution: mH g2f / (4 ), natural for f TeV S. Su
6
Left-right Twin Higgs model
Fermion sector: Top quark mass: Top quark mass eigenstates: SM top and tH EW precision constraints on SU(2)R gauge boson mass f 2 TeV Introduce another Higgs field that only couples to gauge sector Which has a larger VEV S. Su
7
SU(2)L SU(2)R U(1)B-L SU(2)LU(1)Y
Left-right Twin Higgs model U(4) U(4), with gauged SU(2)LSU(2)RU(1)B-L + LR symmetry - Couple to gauge boson only SM Higgs doublet EWSB SM neutral Higgs: H SU(2)L Higgs doublet H1, H20 3 eaten by heavy gauge bosons Left 3 Higgses: neutral Higgs 0, charged Higgs U(4) U(3) SU(2)L SU(2)R U(1)B-L SU(2)LU(1)Y U(4) U(3) 7 GB 7 GB f2 f1 S. Su
8
New particles Heavy gauge bosons: WH, ZH m2WH,ZH g2(f12+f22)
- Heavy gauge bosons: WH, ZH m2WH,ZH g2(f12+f22) Heavy top: tH m2TH M2+y2f12 Other SU(2)R Higgses: m2 g4/(162)f22 log(/gf2) 0 m20 B (f2/f1) B: small, ( GeV)2 Other SU(2)L Higgs H1 m2H1, H20 H20 : soft symmetry breaking, O(f1) S. Su
9
Model parameters Model parameters: f1, (f2, y), , M, B,
- Model parameters: f1, (f2, y), , M, B, Determine particle masses and interactions fixed by Higgs VEV = 4f1 or 2f1 M=150 GeV B=50 GeV = f1/2 fixed by top quark mass S. Su
10
Heavy top tH production
- single heavy top production heavy top pair production S. Su
11
Heavy top tH decay 3 b + 1 j + 1 lepton + missing ET j l t tH W
- j W tH b t l 3 b + 1 j + 1 lepton + missing ET j tH W b l 1 b + 1 j + 1 lepton + missing ET S. Su
12
Heavy gauge boson production
- Drell-Yan process S. Su
13
ZH decay - ZH 2 b + 2 j + 1 lepton + missing ET t q b W l ZH S. Su
14
WH decay WH tH b: 4b + 1 lepton + missing ET
- WH tH b: 4b + 1 lepton + missing ET tH bW : 2b + 1 lepton + missing ET tH tZ: 2b + 3 lepton + missing ET S. Su
15
Higgses SM Higgs mH 150-170 GeV, depending on f1, and M
Higgs searches: gg H ZZ* llll gg H WW* ll WBF qqH qqWW* qqll SU(2)R Higgs: 0, 0 bb j tb 2b + 1 lepton + missing ET S. Su
16
0 Neutral Higgs 0 gg 0 bb, QCD background overwhelming
- Neutral Higgs 0 gg 0 bb, QCD background overwhelming no W0, Z0 associated production (no such coupling) bb0 , tb0, tt0 cross section small Produced via the decay of heavy particles WH b t W 0 l 4 b + 1 lepton + missing ET S. Su
17
- Neutral Higgs no W, Z associated production (no such coupling) bb , tb, tt cross section small Produced via the decay of heavy particles j W tH b t l 3 b + 1 j + 1 lepton + missing ET S. Su
18
H1, H20 H20: good dark matter candidates
- Higgs that couple to gauge boson only: H1, H20 H1H20, H1H1, H20H20, associated production (small) H20 stable : missing energy H1 H20 + soft jets/leptons if decay fast enough: appears as missing energy if decay slow: track ! H20: good dark matter candidates S. Su
19
M=0 case Top Yukawa: f1 v tH = (TL, tR), mtH = yf1
- Top Yukawa: f1 v tH = (TL, tR), mtH = yf1 tSM = (tL, TR), mt = yv Gauge coupling Yukawa coupling 0 tH tH 0 t t 0 tH t H t t H tH tH (small) H tH t W t b W tH b WH t b WH tH b Z t t Z tH tH Z tH t ZH t t ZH tH tH ZH tH t tH b t b t + b (100%) X S. Su
20
decay No two body decay Leading decay: 3 body
- No two body decay Leading decay: 3 body off-shell 0 bb: bbqq final states huge QCD bg H ZZ*, WW* small signal S. Su
21
discovery - Difficult unless Hqq small signal S. Su
22
0 discovery - difficult small signal absent S. Su
23
Heavy top tH discovery single, pair production does not change much.
- single, pair production does not change much. decay: only tH b (100%) 100% either huge QCD bg Or small signal absent S. Su
24
Heavy gauge boson discovery
- ZH, WH drell-yan cross section does not change ZH: ZH ll does not change much Br(ZH t tH) =0 WH: difficult For M=0 discovery of almost all the particle are difficult except for ZH either huge QCD bg Or small signal absent S. Su
25
Conclusions - Left-right twin Higgs model: Higgs as pseudo-goldstone boson quadratic divergence forbidden by left-right symmetry New particles Heavy gauge boson: WH, ZH Heavy top quark tH New Higgses: 0, , H1, H20 (DM) M0: rich collider phenomenology M=0: difficult except for ZH Future work Pick certain channel for detailed study: background, cuts,… Identify twin Higgs mechanism Dark matter study Comparison with other models, e.g., little higgs S. Su
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.