Download presentation
Presentation is loading. Please wait.
1
Comparison Between Deep Learning Packages
Yi Wu 9/22/2018
2
Outlines Background Caffe Theano TensorFlow Work Preliminary Results
9/22/2018
3
Background 9/22/2018
4
Background 9/22/2018
5
Background 9/22/2018
6
Caffe From UC Berkeley Written in C++ Python bindings 9/22/2018
7
Caffe Network structures are stored in .proto files
9/22/2018
8
Caffe Model Zoo 9/22/2018
9
Caffe (+) Train models without writing any code
(+) Lots of pre-trained models, good for testing and fine-tuning (+) Python interface (-) Cumbersome for big networks (-) No good for recurrent networks 9/22/2018
10
Theano From Yoshua Bengio’s group at University of Montreal
symbolic computation compatible with Python 9/22/2018
11
Theano gradient on anything
9/22/2018
12
Theano black box magic http://www.marekrei.com/blog/theano-tutorial/
9/22/2018
13
Theano (+) Python + numpy (+) computation graph
(+) RNN fits nicely in computation graph (-) Hard to manually optimize 9/22/2018
14
TensorFlow From Google Computation graphs Scalable 9/22/2018
15
TensorFlow X h h2 y w_h2 w_h w_0
9/22/2018
16
TensorFlow X h h2 y w_h2 w_h w_0 define graph nodes
9/22/2018
17
TensorFlow X h h2 y w_h2 w_h w_0 define graph edges
9/22/2018
18
TensorFlow Tensorboard
9/22/2018
19
Work Image classification (CNN) data: PASCAL 2012 model: VGG16
21 classes 11540 images (random 1000) model: VGG16 9/22/2018
20
Work Hardware data: 1000 images test for speed
CPU: I7 4GHz GPU: GTX 1080 RAM: 32G data: 1000 images test for speed CPU: Caffe vs Theano vs TensorFlow GPU: Theano vs TensorFlow test for easiness to use installation code test & debug visualization 9/22/2018
21
Preliminary Result 9/22/2018
22
Preliminary Result training with GPU predicted class takes 2 sec
9/22/2018
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.