Download presentation
Presentation is loading. Please wait.
1
Techniques for Dimensionality Reduction
Latent Dirichlet Allocation
2
Quick Recap….
3
V[i,j] = pixel j in image i
PCA as MF PC1 10,000 pixels 1000 * 10,000,00 2 prototypes ~ x1 y1 x2 y2 .. … xn yn a1 a2 .. … am b1 b2 bm v11 … vij 1000 images … vnm PC2 V[i,j] = pixel j in image i
4
V[i,j] = pixel j in image i
PC1 1.4*PC *PC2 = 10,000 pixels 1000 * 10,000,00 2 prototypes 1.4 0.5 x2 y2 .. … xn yn a1 a2 .. … am b1 b2 bm v11 … vij 1000 images … vnm PC2 V[i,j] = pixel j in image i
5
PCA for movie recommendation…
m movies m movies ~ x1 y1 x2 y2 .. … xn yn a1 a2 .. … am b1 b2 bm v11 … vij V n users Bob … vnm V[i,j] = user i’s rating of movie j
6
indicators for r clusters
….. vs k-means indicators for r clusters cluster means original data set ~ M 1 .. … xn yn a1 a2 .. … am b1 b2 bm v11 … vij Z X n examples … vnm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.