Presentation is loading. Please wait.

Presentation is loading. Please wait.

Techniques for Dimensionality Reduction

Similar presentations


Presentation on theme: "Techniques for Dimensionality Reduction"— Presentation transcript:

1 Techniques for Dimensionality Reduction
Latent Dirichlet Allocation

2 Quick Recap….

3 V[i,j] = pixel j in image i
PCA as MF PC1 10,000 pixels 1000 * 10,000,00 2 prototypes ~ x1 y1 x2 y2 .. xn yn a1 a2 .. am b1 b2 bm v11 vij 1000 images vnm PC2 V[i,j] = pixel j in image i

4 V[i,j] = pixel j in image i
PC1 1.4*PC *PC2 = 10,000 pixels 1000 * 10,000,00 2 prototypes 1.4 0.5 x2 y2 .. xn yn a1 a2 .. am b1 b2 bm v11 vij 1000 images vnm PC2 V[i,j] = pixel j in image i

5 PCA for movie recommendation…
m movies m movies ~ x1 y1 x2 y2 .. xn yn a1 a2 .. am b1 b2 bm v11 vij V n users Bob vnm V[i,j] = user i’s rating of movie j

6 indicators for r clusters
….. vs k-means indicators for r clusters cluster means original data set ~ M 1 .. xn yn a1 a2 .. am b1 b2 bm v11 vij Z X n examples vnm


Download ppt "Techniques for Dimensionality Reduction"

Similar presentations


Ads by Google