Presentation is loading. Please wait.

Presentation is loading. Please wait.

Transport Layer Our goals:

Similar presentations


Presentation on theme: "Transport Layer Our goals:"— Presentation transcript:

1 Transport Layer Our goals:
understand principles behind transport layer services: multiplexing/demultiplexing reliable data transfer flow control congestion control learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-oriented transport TCP congestion control

2 Outline Transport-layer services Multiplexing and demultiplexing
Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Principles of congestion control TCP congestion control

3 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point:
one sender, one receiver reliable, in-order byte steam pipelined: TCP congestion and flow control set window size send & receive buffers full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) init’s sender, receiver state before data exchange flow controlled: sender will not overwhelm receiver

4 TCP segment structure source port # dest port # application data
32 bits application data (variable length) sequence number acknowledgement number Receive window Urg data pnter checksum F S R P A U head len not used Options (variable length) URG: urgent data (generally not used) counting by bytes of data (not segments!) ACK: ACK # valid PSH: push data now (generally not used) # bytes rcvr willing to accept RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) The head length is in terms of 32-bit words

5 TCP supports “byte stream” service

6 …Which is emulated by TCP segments

7 simple telnet scenario
TCP seq. #’s and ACKs Seq. #’s: byte stream “number” of first byte in segment’s data ACKs: seq # of next byte expected from other side cumulative ACK Q: how receiver handles out-of-order segments A: TCP spec doesn’t say, - up to implementor Host A Host B User types ‘C’ Seq=42, ACK=79, data = ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ Seq=79, ACK=43, data = ‘C’ host ACKs receipt of echoed ‘C’ Seq=43, ACK=80 time simple telnet scenario

8 Sequence numbers

9 Initial Sequence Numbers

10 TCP Slide Window How much data can a TCP sender have outstanding in the network? How much data should TCP retransmit when an error occurs? Just selectivly repeat the missing data? How does the TCP sender avoid overrunning the receiver’s buffers?

11 TCP Slide Window

12 TCP Round Trip Time and Timeout
Q: how to set TCP timeout value? longer than RTT but RTT varies too short: premature timeout unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions SampleRTT will vary, want estimated RTT “smoother” average several recent measurements, not just current SampleRTT

13 TCP Round Trip Time and Timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT Exponential weighted moving average influence of past sample decreases exponentially fast typical value:  = 0.125

14 Example RTT estimation:

15 TCP Round Trip Time and Timeout
Setting the timeout EstimtedRTT plus “safety margin” large variation in EstimatedRTT -> larger safety margin first estimate of how much SampleRTT deviates from EstimatedRTT: DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| (typically,  = 0.25) Then set timeout interval: TimeoutInterval = EstimatedRTT + 4*DevRTT

16 Outline Transport-layer services Multiplexing and demultiplexing
Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Principles of congestion control TCP congestion control

17 TCP reliable data transfer
TCP creates rdt service on top of IP’s unreliable service Pipelined segments Cumulative acks TCP uses single retransmission timer Flavor of “Go-back-N” Retransmissions are triggered by: timeout events duplicate acks Initially consider simplified TCP sender: ignore duplicate acks ignore flow control, congestion control

18 TCP sender events: data rcvd from app: Create segment with seq #
seq # is byte-stream number of first data byte in segment start timer if not already running (think of timer as for oldest unacked segment) expiration interval: TimeOutInterval timeout: retransmit segment that caused timeout restart timer Ack rcvd: If acknowledges previously unacked segments update what is known to be acked start timer if there are outstanding segments

19 TCP sender (simplified)
NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) } } /* end of loop forever */ TCP sender (simplified) Comment: SendBase-1: last cumulatively ack’ed byte Example: SendBase-1 = 71; y= 73, so the rcvr wants 73+ ; y > SendBase, so that new data is acked

20 TCP: retransmission scenarios
Host A Seq=92, 8 bytes data ACK=100 loss timeout lost ACK scenario Host B X time Host A Host B Seq=92 timeout Seq=92, 8 bytes data Seq=100, 20 bytes data ACK=100 ACK=120 Sendbase = 100 Seq=92, 8 bytes data SendBase = 120 Seq=92 timeout ACK=120 SendBase = 100 SendBase = 120 premature timeout time

21 TCP retransmission scenarios (more)
Host A Seq=92, 8 bytes data ACK=100 loss timeout Cumulative ACK scenario Host B X Seq=100, 20 bytes data ACK=120 time SendBase = 120

22 TCP ACK generation [RFC 1122, RFC 2581]
Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed expected seq #. One other segment has ACK pending Arrival of out-of-order segment higher-than-expect seq. # . Gap detected Arrival of segment that partially or completely fills gap TCP Receiver action Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Immediately send single cumulative ACK, ACKing both in-order segments Immediately send duplicate ACK, indicating seq. # of next expected byte Immediately send ACK, provided that segment starts at lower end of gap

23 Fast Retransmit Time-out period often relatively long:
long delay before resending lost packet Detect lost segments via duplicate ACKs. Sender often sends many segments back-to-back If segment is lost, there will likely be many duplicate ACKs. If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: fast retransmit: resend segment before timer expires

24 Fast retransmit algorithm:
event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y == 3) { resend segment with sequence number y a duplicate ACK for already ACKed segment fast retransmit

25 Outline Transport-layer services Multiplexing and demultiplexing
Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Principles of congestion control TCP congestion control

26 TCP Flow Control flow control
sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control receive side of TCP connection has a receive buffer: speed-matching service: matching the send rate to the receiving app’s drain rate app process may be slow at reading from buffer

27 TCP Flow control: how it works
Rcvr advertises spare room by including value of RcvWindow in segments Sender limits unACKed data to RcvWindow guarantees receive buffer doesn’t overflow (Suppose TCP receiver discards out-of-order segments) spare room in buffer = RcvWindow = RcvBuffer-[LastByteRcvd - LastByteRead]

28 TCP Flow control: how it works
If the sender gets notified of RcvWindow = 0 from the receiver? Problem: the sender never able to send data to the receiver Why: the receiver will not send segments to the sender unless having data/ack to send Solution: the sender continues to send a segment with 1 data byte when RcvWindow = 0; then the receiver will update it.

29 Outline Transport-layer services Multiplexing and demultiplexing
Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Principles of congestion control TCP congestion control

30 TCP Connection Management
Three way handshake: Step 1: client host sends TCP SYN segment to server specifies initial seq # no data Step 2: server host receives SYN, replies with SYNACK segment server allocates buffers specifies server initial seq. # Step 3: client receives SYNACK, replies with ACK segment, which may contain data, allocate buffers and variables Recall: TCP sender, receiver establish “connection” before exchanging data segments initialize TCP variables: seq. #s buffers, flow control info (e.g. RcvWindow) client: connection initiator Socket clientSocket = new Socket("hostname","port number"); server: contacted by client Socket connectionSocket = welcomeSocket.accept();

31 TCP Connection Management (cont.)
Closing a connection: client closes socket: clientSocket.close(); Step 1: client end system sends TCP FIN control segment to server Step 2: server receives FIN, replies with ACK, sends FIN. client FIN server ACK close closed timed wait

32 TCP Connection Management (cont.)
Step 3: client receives FIN, replies with ACK. Enters “timed wait” - in case ACK is lost Step 4: server, receives ACK. Connection closed. Note: with small modification, can handle simultaneous FINs. client server closing FIN ACK closing FIN ACK timed wait closed closed

33 TCP Connection Management (cont)
TCP server lifecycle TCP client lifecycle

34 Popular SYN flood attack
Denial of service attack

35 Outline Transport-layer services Multiplexing and demultiplexing
Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Principles of congestion control TCP congestion control

36 Principles of Congestion Control
informally: “too many sources sending too much data too fast for network to handle” different from flow control! manifestations: lost packets (buffer overflow at routers) long delays (queueing in router buffers) a top-10 problem!

37 Causes/costs of congestion: scenario 1
unlimited shared output link buffers Host A lin : original data Host B lout two senders, two receivers one router, infinite buffers no retransmission large delays when congested maximum achievable throughput

38 Causes/costs of congestion: scenario 2
one router, finite buffers sender retransmission of lost packet Host A lout lin : original data l'in : original data, plus retransmitted data Host B finite shared output link buffers

39 Causes/costs of congestion: scenario 2
l in out = always: (goodput) “perfect” retransmission only when loss: retransmission of delayed (not lost) packet makes larger (than perfect case) for same l in out > l in l out R/2 lin lout b. a. c. R/4 R/3 “costs” of congestion: more work (retrans) for given “goodput” unneeded retransmissions: link carries multiple copies of pkt

40 Causes/costs of congestion: scenario 3
four senders multihop paths timeout/retransmit l in Q: what happens as and increase ? l in Host A lout lin : original data l'in : original data, plus retransmitted data finite shared output link buffers Host B

41 Causes/costs of congestion: scenario 3
Host A lout Host B Another “cost” of congestion: when packet dropped, any “upstream transmission capacity used for that packet was wasted!

42 Approaches towards congestion control
Two broad approaches towards congestion control: End-end congestion control: no explicit feedback from network congestion inferred from end-system observed loss, delay approach taken by TCP Network-assisted congestion control: routers provide feedback to end systems single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) explicit rate sender should send at

43 Outline Transport-layer services Multiplexing and demultiplexing
Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Principles of congestion control TCP congestion control

44 TCP Congestion Control
end-end control (no network assistance) sender limits transmission: LastByteSent-LastByteAcked  CongWin More precisely, min{CongWin, rwnd} Roughly, CongWin is dynamic, function of perceived network congestion How does sender perceive congestion? loss event = timeout or 3 duplicate acks TCP sender reduces rate (CongWin) after loss event three mechanisms: AIMD slow start conservative after timeout events rate = CongWin RTT Bytes/sec

45 TCP AIMD multiplicative decrease: cut CongWin in half after loss event
additive increase: increase CongWin by MSS very RTT in the absence of loss events: probing Long-lived TCP connection

46 TCP Slow Start When connection begins, increase rate exponentially fast until first loss event When connection begins, CongWin = 1 MSS Example: MSS = 500 bytes & RTT = 200 msec initial rate = 20 kbps available bandwidth may be >> MSS/RTT desirable to quickly ramp up to respectable rate

47 TCP Slow Start (more) When connection begins, increase rate exponentially until first loss event: double CongWin every RTT done by incrementing CongWin for every ACK received Summary: initial rate is slow but ramps up exponentially fast Host A Host B one segment RTT two segments four segments time

48 Refinement After 3 dup ACKs:
Philosophy: 3 dup ACKs indicates network capable of delivering some segments timeout before 3 dup ACKs is “more alarming” After 3 dup ACKs: CongWin is cut in half window then grows linearly But after timeout event: CongWin instead set to 1 MSS; window then grows exponentially to a threshold (half of CongWin before loss event), then grows linearly

49 Refinement (more) Implementation:
Q: When should the exponential increase switch to linear? A: When CongWin gets to 1/2 of its value before timeout. Implementation: Variable Threshold At loss event, Threshold is set to 1/2 of CongWin just before loss event (TCP Reno) TCP Tahoe: 1 MSS and slow start

50 Summary: TCP Congestion Control (Reno)
When CongWin is below Threshold, sender in slow-start phase, window grows exponentially. When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly. When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold. When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.

51 TCP sender congestion control
State Event TCP Sender Action Commentary Slow Start (SS) ACK receipt for previously unacked data CongWin = CongWin + MSS, If (CongWin > Threshold) set state to “Congestion Avoidance” Resulting in a doubling of CongWin every RTT Congestion Avoidance (CA) CongWin = CongWin+MSS * (MSS/CongWin) Additive increase, resulting in increase of CongWin by 1 MSS every RTT SS or CA Loss event detected by triple duplicate ACK Threshold = CongWin/2, CongWin = Threshold, Set state to “Congestion Avoidance” Fast recovery, implementing multiplicative decrease. CongWin will not drop below 1 MSS. Timeout CongWin = 1 MSS, Set state to “Slow Start” Enter slow start Duplicate ACK Increment duplicate ACK count for segment being acked CongWin and Threshold not changed

52 TCP throughput What’s the average throughout of TCP as a function of window size and RTT? Ignore slow start Let W be the window size when loss occurs. When window is W, throughput is W/RTT Just after loss, window drops to W/2, throughput to W/2RTT. Average throughout: .75 W/RTT

53 TCP Fairness Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K TCP connection 1 bottleneck router capacity R TCP connection 2

54 Why is TCP fair? Two competing sessions:
Additive increase gives slope of 1, as throughout increases multiplicative decrease decreases throughput proportionally R equal bandwidth share loss: decrease window by factor of 2 congestion avoidance: additive increase Connection 2 throughput loss: decrease window by factor of 2 congestion avoidance: additive increase Connection 1 throughput R

55 Fairness (more) Fairness and parallel TCP connections Fairness and UDP
nothing prevents app from opening parallel cnctions between 2 hosts. Web browsers do this Example: link of rate R supporting 9 connections; new app asks for 1 TCP, gets rate R/10 new app asks for 11 TCPs, gets R/2 ! Fairness and UDP Multimedia apps often do not use TCP do not want rate throttled by congestion control Instead use UDP: pump audio/video at constant rate, tolerate packet loss Research area: TCP friendly

56 Summary principles behind transport layer services:
multiplexing, demultiplexing reliable data transfer flow control congestion control instantiation and implementation in the Internet UDP TCP Next: leaving the network “edge” (application, transport layers) into the network “core”


Download ppt "Transport Layer Our goals:"

Similar presentations


Ads by Google