Download presentation
Presentation is loading. Please wait.
Published bySharon Hines Modified over 6 years ago
1
EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2010
Professor Ronald L. Carter
2
First Assignment Send e-mail to ronc@uta.edu
On the subject line, put “5340 ” In the body of message include address: ______________________ Your Name*: _______________________ Last four digits of your Student ID: _____ * Your name as it appears in the UTA Record - no more, no less L04 03Sep10
3
Second Assignment Please print and bring to class a signed copy of the document appearing at L04 03Sep10
4
QM density of states (cont.)
So density of states, gc(E) is (Vol in p-sp)/(Vol per state*V) = 4pp2dp/[(h3/LxLyLz)*V] Noting that p2 = 2mE, this becomes gc(E) = {4p(2mn*)3/2/h3}(E-Ec)1/2 and E - Ec = h2k2/2mn* Similar for the hole states where Ev - E = h2k2/2mp* L04 03Sep10
5
Fermi-Dirac distribution fctn
The probability of an electron having an energy, E, is given by the F-D distr fF(E) = {1+exp[(E-EF)/kT]}-1 Note: fF (EF) = 1/2 EF is the equilibrium energy of the system The sum of the hole probability and the electron probability is 1 L04 03Sep10
6
Fermi-Dirac DF (continued)
So the probability of a hole having energy E is 1 - fF(E) At T = 0 K, fF (E) becomes a step function and 0 probability of E > EF At T >> 0 K, there is a finite probability of E >> EF L04 03Sep10
7
Maxwell-Boltzman Approximation
fF(E) = {1+exp[(E-EF)/kT]}-1 For E - EF > 3 kT, the exp > 20, so within a 5% error, fF(E) ~ exp[-(E-EF)/kT] This is the MB distribution function MB used when E-EF>75 meV (T=300K) For electrons when Ec - EF > 75 meV and for holes when EF - Ev > 75 meV L04 03Sep10
8
Electron Conc. in the MB approx.
Assuming the MB approx., the equilibrium electron concentration is L04 03Sep10
9
Electron and Hole Conc in MB approx
Similarly, the equilibrium hole concentration is po = Nv exp[-(EF-Ev)/kT] So that nopo = NcNv exp[-Eg/kT] ni2 = nopo, Nc,v = 2{2pm*n,pkT/h2}3/2 Nc = 2.8E19/cm3, Nv = 1.04E19/cm3 and ni = 1.45E10/cm3 L04 03Sep10
10
Calculating the equilibrium no
The idea is to calculate the equilibrium electron concentration no for the FD distribution, where fF(E) = {1+exp[(E-EF)/kT]}-1 gc(E) = [4p(2mn*)3/2(E-Ec)1/2]/h3 L04 03Sep10
11
Equilibrium con- centration for no
Earlier quoted the MB approximation no = Nc exp[-(Ec - EF)/kT],(=Nc exp hF) The exact solution is no = 2NcF1/2(hF)/p1/2 Where F1/2(hF) is the Fermi integral of order 1/2, and hF = (EF - Ec)/kT Error in no, e, is smaller than for the DF: e = 31%, 12%, 5% for -hF = 0, 1, 2 L04 03Sep10
12
Equilibrium con- centration for po
Earlier quoted the MB approximation po = Nv exp[-(EF - Ev)/kT],(=Nv exp h’F) The exact solution is po = 2NvF1/2(h’F)/p1/2 Note: F1/2(0) = 0.678, (p1/2/2) = 0.886 Where F1/2(h’F) is the Fermi integral of order 1/2, and h’F = (Ev - EF)/kT Errors are the same as for po L04 03Sep10
13
Figure (a) Fermi-Dirac distribution function describing the probability that an allowed state at energy E is occupied by an electron. (b) The density of allowed states for a semiconductor as a function of energy; note that g(E) is zero in the forbidden gap between Ev and Ec. (c) The product of the distribution function and the density-of-states function. (p M&K) L04 03Sep10
14
Degenerate and nondegenerate cases
Bohr-like doping model assumes no interaction between dopant sites If adjacent dopant atoms are within 2 Bohr radii, then orbits overlap This happens when Nd ~ Nc (EF ~ Ec), or when Na ~ Nv (EF ~ Ev) The degenerate semiconductor is defined by EF ~/> Ec or EF ~/< Ev L04 03Sep10
15
Figure Energy-gap narrowing Eg as a function of electron concentration. [A. Neugroschel, S. C. Pao, and F. A. Lindhold, IEEE Trans. Electr. Devices, ED-29, 894 (May 1982).] taken from p M&K) L04 03Sep10
16
Donor ionization The density of elec trapped at donors is nd = Nd/{1+[exp((Ed-EF)/kT)/2]} Similar to FD DF except for factor of 2 due to degeneracy (4 for holes) Furthermore nd = Nd - Nd+, also For a shallow donor, can have Ed-EF >> kT AND Ec-EF >> kT: Typically EF-Ed ~ 2kT L04 03Sep10
17
Donor ionization (continued)
Further, if Ed - EF > 2kT, then nd ~ 2Nd exp[-(Ed-EF)/kT], e < 5% If the above is true, Ec - EF > 4kT, so no ~ Nc exp[-(Ec-EF)/kT], e < 2% Consequently the fraction of un-ionized donors is nd/no = 2Nd exp[(Ec-Ed)/kT]/Nc = 0.4% for Nd(P) = 1e16/cm3 L04 03Sep10
18
Figure 1. 9 Electron concentration vs
Figure 1.9 Electron concentration vs. temperature for two n-type doped semiconductors: (a) Silicon doped with 1.15 X 1016 arsenic atoms cm-3[1], (b) Germanium doped with 7.5 X 1015 arsenic atoms cm-3[2]. (p.12 in M&K) L04 03Sep10
19
Classes of semiconductors
Intrinsic: no = po = ni, since Na&Nd << ni =[NcNvexp(-Eg/kT)]1/2, (not easy to get) n-type: no > po, since Nd > Na p-type: no < po, since Nd < Na Compensated: no=po=ni, w/ Na- = Nd+ > 0 Note: n-type and p-type are usually partially compensated since there are usually some opposite- type dopants L04 03Sep10
20
Equilibrium concentrations
Charge neutrality requires q(po + Nd+) + (-q)(no + Na-) = 0 Assuming complete ionization, so Nd+ = Nd and Na- = Na Gives two equations to be solved simultaneously 1. Mass action, no po = ni2, and 2. Neutrality po + Nd = no + Na L04 03Sep10
21
Equilibrium conc (cont.)
For Nd > Na (taking the + root) no = (Nd-Na)/2 + {[(Nd-Na)/2]2+ni2}1/2 For Nd >> Na and Nd >> ni, can use the binomial expansion, giving no = Nd/2 + Nd/2[1 + 2ni2/Nd2 + … ] So no = Nd, and po = ni2/Nd in the limit of Nd >> Na and Nd >> ni L04 03Sep10
22
Example calculations For Nd = 3.2E16/cm3, ni = 1.4E10/cm3
no = Nd = 3.2E16/cm3 po = ni2/Nd , (po is always ni2/no) = (1.4E10/cm3)2/3.2E16/cm3 = 6.125E3/cm3 (comp to ~1E23 Si) For po = Na = 4E17/cm3, no = ni2/Na = (1.4E10/cm3)2/4E17/cm3 = 490/cm3 L04 03Sep10
23
Position of the Fermi Level
Efi is the Fermi level when no = po Ef shown is a Fermi level for no > po Ef < Efi when no < po Efi < (Ec + Ev)/2, which is the mid-band L04 03Sep10
24
EF relative to Ec and Ev Inverting no = Nc exp[-(Ec-EF)/kT] gives Ec - EF = kT ln(Nc/no) For n-type material: Ec - EF =kTln(Nc/Nd)=kTln[(Ncpo)/ni2] Inverting po = Nv exp[-(EF-Ev)/kT] gives EF - Ev = kT ln(Nv/po) For p-type material: EF - Ev = kT ln(Nv/Na) L04 03Sep10
25
EF relative to Efi Letting ni = no gives Ef = Efi ni = Nc exp[-(Ec-Efi)/kT], so Ec - Efi = kT ln(Nc/ni). Thus EF - Efi = kT ln(no/ni) and for n-type EF - Efi = kT ln(Nd/ni) Likewise Efi - EF = kT ln(po/ni) and for p-type Efi - EF = kT ln(Na/ni) L04 03Sep10
26
Locating Efi in the bandgap
Since Ec - Efi = kT ln(Nc/ni), and Efi - Ev = kT ln(Nv/ni) The 1st equation minus the 2nd gives Efi = (Ec + Ev)/2 - (kT/2) ln(Nc/Nv) Since Nc = 2.8E19cm-3 > 1.04E19cm-3 = Nv, the intrinsic Fermi level lies below the middle of the band gap L04 03Sep10
27
Sample calculations Efi = (Ec + Ev)/2 - (kT/2) ln(Nc/Nv), so at 300K, kT = meV and Nc/Nv = 2.8/1.04, Efi is 12.8 meV or 1.1% below mid-band For Nd = 3E17cm-3, given that Ec - EF = kT ln(Nc/Nd), we have Ec - EF = meV ln(280/3), Ec - EF = eV =117meV ~3x(Ec - ED) what Nd gives Ec-EF =Ec/3 L04 03Sep10
28
Equilibrium electron conc. and energies
L04 03Sep10
29
Equilibrium hole conc. and energies
L04 03Sep10
30
vx = axt = (qEx/m*)t, and the displ
Carrier Mobility In an electric field, Ex, the velocity (since ax = Fx/m* = qEx/m*) is vx = axt = (qEx/m*)t, and the displ x = (qEx/m*)t2/2 If every tcoll, a collision occurs which “resets” the velocity to <vx(tcoll)> = 0, then <vx> = qExtcoll/m* = mEx L04 03Sep10
31
Carrier mobility (cont.)
The response function m is the mobility. The mean time between collisions, tcoll, may has several important causal events: Thermal vibrations, donor- or acceptor-like traps and lattice imperfections to name a few. Hence mthermal = qtthermal/m*, etc. L04 03Sep10
32
Carrier mobility (cont.)
If the rate of a single contribution to the scattering is 1/ti, then the total scattering rate, 1/tcoll is L04 03Sep10
33
Figure (p. 31 M&K) Electron and hole mobilities in silicon at 300 K as functions of the total dopant concentration. The values plotted are the results of curve fitting measurements from several sources. The mobility curves can be generated using Equation with the following values of the parameters [3] (see table on next slide). L04 03Sep10
34
Parameter Arsenic Phosphorus Boron
μmin 52.2 68.5 44.9 μmax 1417 1414 470.5 Nref 9.68 X 1016 9.20 X 1016 2.23 X 1017 α 0.680 0.711 0.719 Figure (cont. M&K) L04 03Sep10
35
Drift Current The drift current density (amp/cm2) is given by the point form of Ohm Law J = (nqmn+pqmp)(Exi+ Eyj+ Ezk), so J = (sn + sp)E = sE, where s = nqmn+pqmp defines the conductivity The net current is L04 03Sep10
36
Net silicon extr resistivity (cont.)
Since r = (nqmn + pqmp)-1, and mn > mp, (m = qt/m*) we have rp > rn Note that since 1.6(high conc.) < rp/rn < 3(low conc.), so 1.6(high conc.) < mn/mp < 3(low conc.) L04 03Sep10
37
Figure (p. 29) M&K Dopant density versus resistivity at 23°C (296 K) for silicon doped with phosphorus and with boron. The curves can be used with little error to represent conditions at 300 K. [W. R. Thurber, R. L. Mattis, and Y. M. Liu, National Bureau of Standards Special Publication 400–64, 42 (May 1981).] L04 03Sep10
38
References *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. L04 03Sep10
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.