Presentation is loading. Please wait.

Presentation is loading. Please wait.

HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010.

Similar presentations


Presentation on theme: "HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010."— Presentation transcript:

1 HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

2 Specifications v2.0 Interface between machine vacuum and Atmospheric pressure 10 -8 mbar / P atm Protective atmosphere !!! Diameter 60 mm (Updated) Thickness 5 mm (Updated) Resist to a proton beam size on the window : 1 = 0.5 mm Beam Size at the TT66 Vacuum Window, C. Hessler, 26.02.2010 2Michael MONTEIL- 16 March 2010

3 Window geometry – C-C option Carbon/Carbon composite: 1501 G from SGL Cylindrical window Diameter 80 mm (Updated) – Aperture 60 mm (Updated) Thickness: 0.5 cm (Updated) Aperture ( flange internal diameter ): 60 mm (Updated) 3Michael MONTEIL- 16 March 2010

4 Solutions #1 for C-C tightness problem: Differential vacuum (V1.0) 1 Window C-C – Pumping speed needed: 8.4 x 10 9 l/s … 2 Windows C-C with differential pumping – Pumping speed needed: 8.4 x 10 3 l/s … 3 Windows C-C with differential pumping – Pumping speed needed: 8.4 x 10 1 l/s OK 4Michael MONTEIL- 16 March 2010

5 Solutions #1 for C-C tightness problem: Differential vacuum (New values V2.0) 1 Window C-C – Pumping speed needed: 2.3 x 10 8 l/s … 2 Windows C-C with differential pumping – Pumping speed needed: 8.94 x 10 2 l/s OK ! 3 Windows C-C with differential pumping – Pumping speed needed: 13 l/s Too low ?! 5Michael MONTEIL- 16 March 2010

6 Solutions #1 What about radiations in this area ? – Possible maintenance needed on the roots pump… Protective atmosphere Decreasing pressure in Vacuum side with serial pumps Michael MONTEIL- 16 March 20106

7 7 P2 : Roots pump 100 –> 1500 m 3 /h 10 -3 -> 10 Bar P3 : Ion pump 400 l/s Reference

8 Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0) 8Michael MONTEIL- 16 March 2010 Solution #3 : Tight steelring with a C-C plate (v1.0)

9 Solution #4 : Beryllium Metal -> Tight !! No differential pumping Simple window assembly Thin thickness Toxicity Price Michael MONTEIL- 16 March 20109

10 Solution #5 : Be + C-C Solution #4 but the pressure load is supported by a C-C plate Simple window assembly Thin thickness (no differential pumping…) Be cannot pollute vacuum unless C-C fail Tight Price… but compare to intermediate Vac. Pumps price ? Michael MONTEIL- 16 March 201010

11 Solutions - Sum-up #1: C-C (Differential pumping) – Protective atm (Nitrogen ?) – Radiations? #2: C-C + Graphite foil (useless now) #3: Tight steel ring with a C-C plate #4: Beryllium – Safety problem #5: C-C + Beryllium Michael MONTEIL- 16 March 201011

12 ANSYS Study - Solutions #1 stresses and deflection - C-C under P = 1.4atm Linear circular fixed support 2 planes of symmetry Geometry – Diameter 80 mm – Thickness: 5 mm – Aperture: 60 mm Pressure 1.4 bar 12Michael MONTEIL- 16 March 2010

13 ANSYS Study - Solutions #1 stresses and deflection - C-C under P = 1.4atm Orthotropic properties : 18 plies [0°/90°…] Smooth and continuous temperature distribution Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature and directions 13Michael MONTEIL- 16 March 2010

14 C-C - Pressure load - Deflection 14Michael MONTEIL- 16 March 2010 7.4 μm

15 C-C - Pressure load – Von-Mises 15Michael MONTEIL- 16 March 2010 5.9 Mpa

16 C-C - Pressure load – Tsaï-Wu 16Michael MONTEIL- 16 March 2010

17 C-C - Thermal load ANSYS input = FLUKA output Radial C-C | 1 = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field Depth R (cm) T (°C) Z (cm) T (°C) 17Michael MONTEIL- 16 March 2010

18 C-C - Pressure + Thermal load – Deflection 18Michael MONTEIL- 16 March 2010 10.6 μm

19 C-C - Pressure + Thermal load – Von-Mises 19Michael MONTEIL- 16 March 2010 31 Mpa

20 C-C - Pressure + Thermal load – Tsaï- Wu 20Michael MONTEIL- 16 March 2010

21 ANSYS Study - Solutions #4 stresses and deflection - Be under P = 1.4atm Linear circular fixed support 2 planes of symmetry Geometry – Diameter 80 mm – Thickness: 0.254 mm – Aperture: 60 mm Pressure 1.4 bar 21Michael MONTEIL- 16 March 2010

22 ANSYS Study - Solutions #4 stresses and deflection - Be under P = 1.4atm Smooth and continuous temperature distribution Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature Be: – Poissons ratio = 0.1 – High R e = 275 Mpa – High R m = 551 MPa 22Michael MONTEIL- 16 March 2010

23 Be - Pressure load - Deflection 23Michael MONTEIL- 16 March 2010 8.1 mm

24 Be - Pressure load – Von-Mises 24Michael MONTEIL- 16 March 2010 319 Mpa

25 Be - Pressure load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201025 1.7

26 Be - Thermal load ANSYS input = FLUKA output Be | 1 = 0. 5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field Z (cm) T (°C) 26Michael MONTEIL- 16 March 2010 Z (cm) Radial Be T (°C)

27 Be - Pressure + Thermal load – Deflection 27Michael MONTEIL- 16 March 2010 8 mm

28 Be - Pressure + Thermal load – Von-Mises 28Michael MONTEIL- 16 March 2010 315 Mpa

29 Be - Pressure + Thermal load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201029 1.7

30 ANSYS Study - Solutions #5 stresses and deflection - C-C+Be under P = 1.4atm 2 Studies – C-C (See Solution #4) Pressure load Pressure + Temperature loads – Be (Following slides) Flattered on a C-C plate (Fixed support) and apply pressure load on the other side Flattered on a C-C plate (Fixed support) and apply pressure load on the other side + Temperature load 2 planes of symmetry Geometry – Diameter 80 mm – Thickness C-C: 5 mm Be: 0.254 mm – Aperture: 60 mm Pressure 1.4 bar 30Michael MONTEIL- 16 March 2010

31 ANSYS Study - Solutions #5 stresses and deflection - C-C+Be under P = 1.4atm Smooth and continuous temperature distribution Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature 31Michael MONTEIL- 16 March 2010

32 32 Be (flatter on C-C) - Pressure load – Deformation

33 Be (flatter on C-C) - Pressure load – Von-Mises Michael MONTEIL- 16 March 201033

34 Thermal load ANSYS input = FLUKA output Radial C-C C-C + Be | 1 = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field Depth C-C T (°C) Z (cm) T (°C) 34Michael MONTEIL- 16 March 2010 Z (cm) Radial Be

35 Be (flatter on C-C) - Pressure + Thermal load – Deflection Michael MONTEIL- 16 March 201035 x 2.6e+002

36 Be (flatter on C-C) - Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 201036

37 Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201037

38 To do : Rough mechanical design – Solution #1 C-C with differential pumping Maybe coating 15 cm length between upstream and downstream sides – Solution #5 C-C + Be Order quotes of Be Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil Nickel-coating to prevent oxidation on Be ? 15 cm length between upstream and downstream sides 38Michael MONTEIL- 16 March 2010

39 39

40 Back up slides Michael MONTEIL- 16 March 201040

41 C-C 1.4 bar diameter 146 mm (v1.0) Michael MONTEIL- 16 March 201041

42 Pressure load - Deflection 42Michael MONTEIL- 16 March 2010

43 Pressure load – Von-Mises 43Michael MONTEIL- 16 March 2010

44 Pressure load – Tsaï-Wu 44Michael MONTEIL- 16 March 2010

45 Thermal load ANSYS input = FLUKA output Radial C-C | 1 = 0.25 mm | 1.7e11 p+ Axisymmetrical radial temperature field Depth R (cm) T (°C) Z (cm) T (°C) 45Michael MONTEIL- 16 March 2010

46 Pressure + Thermal load – Deflection 46Michael MONTEIL- 16 March 2010

47 Pressure + Thermal load – Von-Mises 47Michael MONTEIL- 16 March 2010

48 Pressure + Thermal load – Tsaï-Wu 48Michael MONTEIL- 16 March 2010

49 Be Only Pressure 1 bar instead of 1.4 bar Michael MONTEIL- 16 March 201049

50 Pressure load - Deflection 50Michael MONTEIL- 16 March 2010

51 Pressure load – Von Mises 51Michael MONTEIL- 16 March 2010

52 Pressure load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201052

53 Thermal load ANSYS input = FLUKA output C-C | 1 = 0.25 mm | 1.7e11 p+ Axisymmetrical radial temperature field Z (cm) T (°C) 53Michael MONTEIL- 16 March 2010 Z (cm) Radial Be T (°C)

54 Pressure + Thermal load – Deflection 54Michael MONTEIL- 16 March 2010

55 Pressure + Thermal load – Von-Mises 55Michael MONTEIL- 16 March 2010

56 Pressure + Thermal load – Safety factor Ult.Strength Michael MONTEIL- 16 March 201056


Download ppt "HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010."

Similar presentations


Ads by Google