Presentation is loading. Please wait.

Presentation is loading. Please wait.

Development of the SRF Cavity Design for the Cooler ERL

Similar presentations


Presentation on theme: "Development of the SRF Cavity Design for the Cooler ERL"— Presentation transcript:

1 Development of the SRF Cavity Design for the Cooler ERL
JLEIC Collaboration Meeting Spring 2016 F. Marhauser 29. March 2016

2 ERL Baseline Conceptual Design Parameters
from Haipeng Wang’s slides, Nov/2015 MEIC-ERL1 for Electron Cooler, 952.6MHz Five-cell, Iris diameter = 100mm, Low Loss (LL) shape cavity design JLab High Current (HC) for FEL-ERL Five-cell, Iris diameter = 70/140 mm (1497/748.5 MHz) 10/9/2018

3 ERL Baseline Conceptual Design Parameters
from Haipeng Wang’s slides, Nov/2015 On Crest Full Energy Gain 50 MeV Full energy 55 Acceleration phase (0 on crest) -20 deg. Deceleration phase (0 on crest) 159 Dechirper/rechirper RF peak voltage 1.8 MV Dechirper/rechirper beam phase (0 on crest) -90/90 Linac beam pass 2 Injector CW beam current 200, 20, 2… mA Bunch charge 420 pC SRF cavity frequency 952.6 MHz # of cells per cavity 5 # of cavities per cryomodule 6 Operating field at full energy gain (Eacc) 10.6 MV/m 10/9/2018

4 ERL Baseline Conceptual Design Parameters
from Haipeng Wang’s slides, Nov/2015 On Crest Full Energy Gain 50 MeV Full energy 55 Acceleration phase (0 on crest) -20 deg. Deceleration phase (0 on crest) 159 Dechirper/rechirper RF peak voltage 1.8 MV Dechirper/rechirper beam phase (0 on crest) -90/90 Linac beam pass 2 Injector CW beam current 200, 20, 2… mA Bunch charge 420 pC SRF cavity frequency 952.6 MHz # of cells per cavity 5 # of cavities per cryomodule 6 Operating field at full energy gain (Eacc) 10.6 MV/m Iris diameter/radius 100/50 mm 10/9/2018

5 Comparison of Different Cavity Shapes on ERL Projects
from Haipeng Wang’s slides, Nov/2015 BERLinPro-ERL uses Cornell-ERL cavity shape r/l 50mm radius for 952.6MHz 0.5 z/(bl) 10/9/2018

6 What is an Optimum Elliptical SRF Cavity Shape?
There is no optimum elliptical cell shape, but trade-off between performance parameters acceptable for machine Crucial parameters that determine optimization process for SRF cavities: Iris radius  strongly impacts achievable operational parameters: Cutoff of beam tube (number trapped HOMs) Surface peak fields (quench limit  Bpk/Eacc, field emission onset  Epk/Eacc) Cell-to-cell coupling (kcc)  coupling of trapped modes to HOM dampers in beam tubes Number of cells Sensitivity of field amplitudes in cell with fabrication tolerances (δAcell ~ N2/kcc* δfcell,error) N2/kcc should be small to minimize possible confinement of HOMs in cells Equator/iris ellipses and wall inclination Low Loss (LL)  small Bpk/Eacc High Gradient (HG)  small Epk/Eacc Minimize cryogenic (dynamic) losses  maximize R/Q*G Equatorial cell region  Impact energy for resonant multipacting electrons Wall inclination (low loss vs. rigidity of cell)  Lorentz Force detuning 10/9/2018

7 What are the Main Operational Constraints?
Given: Eacc = 10.6 MV/m (CW)  comparably low MV/m CW, spec’d for CEBAF upgrade (with contingency) 16 MV/m CW spec’d for LCLS-II MV/m spec’d for Eu X-FEL (pulsed)  Quench limitation should/will not be the problem  Can sacrifice Bpk/Eacc Field Emission (FE) is prevalent issue in machines (e.g. contamination during clean room assembly)  Do not sacrifice much on Epk/Eacc HOM damping important (strong requirement)  Do not sacrifice much on cell-to-cell coupling  With given radius favors High Current (HC) design, i.e. straight walls, but original HC design has a comparably larger tube/iris ID, thus strong cell-to-cell coupling 10/9/2018

8 Field Emission 10/9/2018

9 Field Emission C100/R100: Epk/Eacc = 2.17 Epk = 30 MV/m 10/9/2018

10 What are the Main Operational Constraints?
Given: Eacc = 10.6 MV/m (CW)  comparably low MV/m CW, spec’d for CEBAF upgrade (with contingency) 16 MV/m CW spec’d for LCLS-II MV/m spec’d for Eu X-FEL (pulsed)  Quench limitation should/will not be the problem  Can sacrifice Bpk/Eacc Add 30 % contingency  Eacc = 13.8 MV/m Peak field not to exceed Epk = 30 MV/m  Epk/Eacc = 2.17 by chance equal to CEBAF LL design 10/9/2018

11 How to make sure that one has obtained an optimum cell shape given all the trade-offs to make ?
10/9/2018

12 JLEIC Design Optimization
All cells scaled to MHz and iris ID = 100 mm > 400 cell shapes Epk/Eacc = 2.17 10/9/2018

13 JLEIC Design Optimization
All cells scaled to MHz and iris ID = 100 mm > 400 cell shapes Epk/Eacc = 2.17 10/9/2018

14 JLEIC Design Optimization
All cells scaled to MHz and iris ID = 100 mm Epk = 30 MV/m Bpk < 60 mT Epk < 30 MV/m Eacc = 10.6 MV/m + 30% = 13.8 MV/m 10/9/2018

15 JLEIC Design Optimization
All cells scaled to MHz and iris ID = 100 mm Eacc = 10.6 MV/m + 30% = 13.8 MV/m Parameter Unit Value cavity type LHeC study CEBAF HC LCLS-II (TESLA) CEBAF OC CEBAF LL JLEIC (JG) (FM) kcc % 2.14 3.12 1.89 3.15 1.49 2.81 2.37 N2/kcc 11.71 8.01 42.97 7.94 32.89 8.90 10.57 10/9/2018

16 New JLEIC Cavity Cell Multipacting Barrier
10/9/2018

17 Elliptical Cavity Cell Multipacting Barriers
10/9/2018

18 HOM Excitation Excitation lines from Haipeng Wang’s slides, Nov/2015
476.3MHz 952.6MHz 1.9052GHz 476.3MHz rep. rate 200 mA injection current 10/9/2018

19 Higher Order Mode (HOM) Studies
Including 3 waveguide dampers (plus coaxial coupler) 10/9/2018

20 Higher Order Mode (HOM) Studies
Including 3 waveguide dampers (plus coaxial coupler) 10/9/2018

21 Higher Order Mode (HOM) Studies
Including 3 waveguide dampers (plus coaxial coupler) tube = 100 mm Ql~5e7 10/9/2018

22 Higher Order Mode (HOM) Studies
Trapped dipole mode pair close to beam tube cutoff MHz, TM111 /5-mode Ql~4.9e7 MHz, TM111 /5-mode Electrical field (logarithmic scale) Ql~5.1e7 Electrical field (logarithmic scale) 10/9/2018

23 Tuning Sensitivity & Stiffness (Frederic Fors)
3D FE models have been created and analyzed in ANSYS Workbench 16.1, based on previous analysis work by Gary Cheng Tuning sensitivity: One end face of cavity is fixed with constraints in all directions (yellow) Other end face is displaced 1 mm in the axial direction, other DOF’s constrained. (red) Reaction force is obtained from constrained end surface to calculate cavity stiffness. C100 helium vessel end discs and end cell stiffener rings added 10/9/2018

24 Tuning Sensitivity & Stiffness (Frederic Fors)
5-cell cavity with 3mm wall thickness with end cell stiffeners Stiffening ring radius (mm) c f1 (MHz) f2 (MHz) Δf (Hz) df/dL (kHz/mm) Tuning Force (N) Tuning Stiffness (lbf/in) 72.5 949.38 949.67 295.79 2861.9 16342 80 949.37 949.68 307.26 4601.9 26278 85 949.69 315.43 6410.2 36603 90 949.70 324.37 8672.5 49521 100 949.71 332.15 73482 5-cell cavity with 4mm wall thickness Stiffening ring radius (mm) c f1 (MHz) f2 (MHz) Δf (Hz) df/dL (kHz/mm) Tuning Force (N) Tuning Stiffness (lbf/in) 949.37 949.64 266.47 2565.0 14647 72.5 949.66 298.10 4748.3 27114 80 949.67 307.23 6386.1 36465 90 949.68 317.98 9147.1 52231 100 949.69 323.00 66828 110 320.54 76090 120 315097 315.10 80942 130 311.55 84381 10/9/2018

25 Tuning Sensitivity (Frederic Fors)
10/9/2018

26 Tuning Stiffness (Frederic Fors)
Horizontal lines indicate levels without stiffener rings 10/9/2018

27 Pressure Sensitivity (Frederic Fors)
Tuning sensitivity: One end face of cavity is constrained in the axial direction (yellow) Pressure load of 1 bar applied over the outer surface of the cavity (red) Spring representing a stiff tuner connects the two end surfaces of the cavity (Ktuner = kN/mm ( lbf/in)) 10/9/2018

28 Pressure Sensitivity (Frederic Fors)
5-cell cavity with 3mm wall thickness with end cell stiffeners Stiffening ring radius (mm) c f1 (MHz) f2 (MHz) Δf (Hz) df/dP (Hz/torr) (Hz/mbar) Smax (excl. cav ends) (MPa) 72.5 949.33 949.32 -11.04 -8.28 13.87 80 949.31 -13.77 -10.33 14.41 85 -15.11 -11.33 14.89 90 949.34 -15.8 -11.85 15.19 100 -15.69 -11.77 23.59 5-cell cavity with 4mm wall thickness Stiffening ring radius (mm) c f1 (MHz) f2 (MHz) Δf (Hz) df/dP (Hz/torr) (Hz/mbar) Smax (excl. cav ends) (MPa) 949.3 949.26 -56.95 -42.71 8.52 72.5 949.31 949.27 -54.87 -41.16 14.46 80 -49.95 -37.46 16.73 90 949.28 -41.33 -31.00 16.55 100 -33.72 -25.29 19.71 110 949.29 -28.52 -21.39 12.65 120 -19144 -25.52 -19.14 8.802 130 -24.2 -18.15 8.827 10/9/2018

29 Pressure Sensitivity (Frederic Fors)
10/9/2018

30 Modal Analyses (Frederic Fors)
Comparison between the first 6 modes of the unstiffened 4 mm cavity and the 3 mm cavity with 6x 85 mm stiffener rings Modes marked in yellow will be suppressed by the use of a spider stiffener on the middle cell 5-cell cavity with 4mm wall thickness, no stiffeners 5-cell cavity with 3mm wall thickness with end cell stiffeners (6 x 85 mm rings) Mode No. f (Hz) Description 1 30.8 1st order bending 2 104.9 2nd order bending 3 137.6 1st order axial 4 187.5 3rd order bending 5 249.7 4th order bending 6 269.4 2nd order axial Mode No. f [Hz] Description 1 71.075 1st order bending 2 236.01 Axial 3 240.39 2nd order bending 4 433.54 3rd order bending 5 467.96 2nd order axial 6 742.5 4th order bending Findings: The end rings added to the 3 mm cavity increases its axial stiffness and lowers the pressure sensitivity 85 mm rings are chosen to keep the tuning stiffness under lbf/in However, the smaller 85 mm rings makes the cavity weak in bending, and the modal performance is therefore worse than for the 3mm cavity with 4x110 mm rings

31

32 Backup Slides 10/9/2018

33 Comparison of Cavity Parameters for Existing Designs
Unit Value cavity type LHeC study CEBAF HC LCLS-II (TESLA) CEBAF OC CEBAF LL frequency MHz 802 748.5 1300 1497 number of cells 5 9 7 Lactive mm 922.14 1000 500 700 R/Q = Veff2/(ω*W) 583.4 518.8 1036.0 482.5 868.9 R/Q/cell 116.7 103.8 115.1 96.5 124.1 G 273.2 278.3 270.0 274.0 280.3 R/Q∙G/cell  Ω2 31877 28876 31080 26441 34793 Eq. Diameter 323.12 352.73 206.60 187.03 173.99 Iris Diameter 115 140 70 53 Tube Diameter 78 Eq./Iris ratio 2.81 2.52 2.95 2.67 3.28 Wall angle (mid-cell) deg. 13.31  8.10 Epeak/Eacc (mid cell) 2.07 2.44 1.98 2.56 2.17 Bpeak/Eacc (mid cell) mT/(MV/m) 4.00 4.24 4.17 4.56 3.74 kcc % 2.14 3.12 1.89 3.15 1.49 N2/kcc 11.71 8.01 42.97 7.94 32.89 cutoff TE11 GHz 1.53 1.25 2.25 2.51 cutoff TM01 1.996 1.64 2.94 10/9/2018

34 Comparison of Cavity Parameters for Existing Designs
Unit Value cavity type CEBAF HC TESLA (e.g. LCLS-II) CEBAF OC CEBAF LL LHeC study (FM) frequency MHz 748.5 1300 1497 802 number of cells 5 9 7 Lactive mm 1000 500 700 922.14 R/Q = Veff2/(ω*W) 518.8 1036.0 482.5 868.9 583.4 R/Q/cell 103.8 115.1 96.5 124.1 116.7 G 278.3 270.0 274.0 280.3 273.2 R/Q∙G/cell  Ω2 28876 31080 26441 34793 31877 Eq. Diameter 352.73 206.60 187.03 173.99 323.12 Iris Diameter 140 70 53 115 Tube Diameter 78 Eq./Iris ratio 2.52 2.95 2.67 3.28 2.81 Wall angle (mid-cell) deg. 13.31  8.10 Epeak/Eacc (mid cell) 2.44 1.98 2.56 2.17 2.07 Bpeak/Eacc (mid cell) mT/(MV/m) 4.24 4.17 4.56 3.74 4.00 kcc % 3.12 1.89 3.15 1.49 2.14 N2/kcc 8.01 42.97 7.94 32.89 11.71 cutoff TE11 GHz 1.25 2.25 2.51 1.53 cutoff TM01 1.64 2.94 1.996 Ranking 1 2 3 4 5 10/9/2018

35 Comparison of Cavity Parameters for Existing Designs
Unit Value cavity type CEBAF HC TESLA (e.g. LCLS-II) CEBAF OC CEBAF LL LHeC study (FM) JLEIC frequency MHz 748.5 1300 1497 802 952.6 number of cells 5 9 7 Lactive mm 1000 500 700 922.14 786.8 R/Q = Veff2/(ω*W) 518.8 1036.0 482.5 868.9 583.4 569 R/Q/cell 103.8 115.1 96.5 124.1 116.7 113.8 G 278.3 270.0 274.0 280.3 273.2 273 R/Q∙G/cell  Ω2 28876 31080 26441 34793 31877 31071 Eq. Diameter 352.73 206.60 187.03 173.99 323.12 272.66 Iris Diameter 140 70 53 115 100 Tube Diameter 78 Eq./Iris ratio 2.52 2.95 2.67 3.28 2.81 2.73 Wall angle (mid-cell) deg. 13.31  8.10 Epeak/Eacc (mid cell) 2.44 1.98 2.56 2.17 2.07 2.16 Bpeak/Eacc (mid cell) mT/(MV/m) 4.24 4.17 4.56 3.74 4.00 4.03 kcc % 3.12 1.89 3.15 1.49 2.14 2.37 N2/kcc 8.01 42.97 7.94 32.89 11.71 10.57 cutoff TE11 GHz 1.25 2.25 2.51 1.53 1.76 cutoff TM01 1.64 2.94 1.996 2.29 10/9/2018

36 Five-Cell Cavity Parameters
Unit Value frequency MHz 952.6 (cold, vacuum with tuner) 952.3 (cold, vacuum VTA) (warm, vacuum before chemistry) R/Q (β = 1) 569.04 G 273.01 R/Q *G Ω2 155355 Transit Time Factor 0.720 Epeak/Eacc 2.16 Bpeak/Eacc mT/(MV/m) 4.03 Lactive mm 786.77 κ=Sqrt(R/Q)/L √Ω/m 30.32 Tube length (3 half cell length each side) 236.03 Ltotal Iris/Tube ID 100 kcc (cell-to-cell coupling) % 2.37 Total surface area cm2 Tube surface area 1483.0 Cavity surface w/o beam tube 8631.4 Total volume cm3 10/9/2018

37 Comparison of Main JLEIC Five-cell Candidate Shapes
Parameter Unit Value Cavity type JLEIC (JG) (FM) Frequency MHz 952.6 Number of cells 5 Lactive mm 770.7 786.8 R/Q = Veff2/(ω*W) 574.7 569.0 R/Q/cell 114.9 113.8 G 279.6 273.0 R/Q∙G  Ω2 160667 155355 Flat equator (each mid cell) +8 Flat equator (each end cup) -0.043 +2.11 Eq. Diameter 276.8 272.7 Iris Diameter 100 Tube Diameter Eq./Iris ratio 2.77 2.73 Wall angle (mid-cell) deg. Epeak/Eacc (mid cell) 2.42 2.16 Bpeak/Eacc (mid cell) mT/(MV/m) 3.98 4.03 kcc % 2.81 2.37 N2/kcc  1/% 8.90 10.57 Cutoff TE11 GHz 1.76 Cutoff TM01 2.29 3.3% deviation 10.6% deviation 1.3% deviation 15.7 % deviation 10/9/2018


Download ppt "Development of the SRF Cavity Design for the Cooler ERL"

Similar presentations


Ads by Google