Download presentation
Presentation is loading. Please wait.
1
Rough surface reflections
Gregory Hart Steve Turley BYU XUV
2
Why do we care? Astronomy Computers Microscopy He Photolithography
imaging BYU XUV
3
XUV 1-100 nm Low reflectance 𝑛≈1 𝜅≈1 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑒 BYU XUV
4
BYU XUV
5
The Equations 𝐸 𝑧 𝑖𝑛𝑐𝑙 𝑥,𝑦 = 𝐾 𝑡 𝑥,𝑦 −𝑖 𝑘 1 𝜂 𝐽 𝑧 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 1 𝑟 𝑑 𝑠 ′ + 𝜕 𝜕𝑥 𝑦 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 1 𝑟 𝑑 𝑠 ′ − 𝜕 𝜕𝑦 𝑥 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 1 𝑟 𝑑 𝑠 ′ 0= 𝐾 𝑡 𝑥,𝑦 −𝑖 𝑘 2 𝜂 𝐽 𝑧 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 2 𝑟 𝑑 𝑠 ′ + 𝜕 𝜕𝑥 𝑦 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 2 𝑟 𝑑 𝑠 ′ 𝑦 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 2 𝑟 𝑑 𝑠 ′ − 𝜕 𝜕𝑦 𝑥 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 2 𝑟 𝑑 𝑠 ′ 𝑥 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 𝑘 2 𝑟 𝑑 𝑠 ′ 𝛻∙( 𝜖 0 E)= 𝜌 𝑒 𝛻∙( 𝜇 0 𝐇)= 𝜌 𝑚 𝛻×𝐄=𝑖ω 𝜇 0 𝐇−𝑲 𝛻×𝐇=−𝑖ω ϵ 0 𝐄+𝑱 𝛻 2 + 𝑘 2 𝐄=0 𝛻 2 − 𝑘 2 𝐁=0 Assumption time dependence is harmonic, mu = mu0, epsilon is a scalar. S polarized makes it a scalar problem in z. BYU XUV
6
Numerically 𝐸= 1 2 𝐾 𝑡 + 𝑖𝑗 𝑀 𝑖𝑗 1 𝐽 𝑧 𝑖 + 𝑖𝑗 𝑁 𝑖𝑗 1 𝐾 𝑡 0=− 1 2 𝐾 𝑡 + 𝑖 𝑀 𝑖 2 𝐽 𝑧 𝑖 + 𝑖 𝑁 2 𝐾 𝑡 𝑀 𝑖𝑗 𝜔 = 𝑘 𝜔 𝜂 𝜔 4 𝑐 𝑖 𝑆 𝑖 𝐻 0 1 𝑘 𝜔 𝑟 𝑖𝑗 𝑁 𝑖𝑗 𝜔 = 𝑖 𝑘 𝜔 4 𝑐 𝑖 𝑆 𝑖 𝐻 1 1 ( 𝑘 𝜔 𝑟 𝑖𝑗 ) 𝑟 𝑖𝑗 [ cos 𝜃 𝑖 ′ 𝑦 𝑗 − 𝑦 𝑖 ′ − sin 𝜃 𝑖 ′ 𝑥 𝑗 − 𝑥 𝑖 ′ ] 𝐸 0 = ( 𝑁 1 ) 𝑀 1 (− 𝑁 2 ) 𝑀 𝐾 𝐽 BYU XUV
7
Test .Smooth surface incident at 20° BYU XUV
8
Test .Cylindical surface incident at 20° BYU XUV
9
Correlation BYU XUV
10
Discussion The program works for simple cases
Found single processor limits Random roughnesses have same overall effect 2D surface Parallel processing BYU XUV
11
Acknowledgement Steve Turley Jed Johnson Fulton Supercomputing Lab
BYU Physics and Astronomy BYU XUV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.