Presentation is loading. Please wait.

Presentation is loading. Please wait.

Vector Calculus and Quadratic function

Similar presentations


Presentation on theme: "Vector Calculus and Quadratic function"β€” Presentation transcript:

1 Vector Calculus and Quadratic function
10/13/2018 By Nafees Ahamad

2 Gradient of a function Consider a multivariable, scalar function f(x)
f(x)=f(xnx1)=f(x1,x2…xn) where π‘₯=π‘₯ 𝑛×1 = π‘₯ 1 π‘₯ π‘₯ 𝑛 𝑖𝑠 π‘Ž π‘£π‘’π‘π‘‘π‘œπ‘Ÿ Gradient of f(x) 𝛻𝑓 π‘₯ = π‘”π‘Ÿπ‘Žπ‘‘ 𝑓(π‘₯) π‘₯=π‘₯βˆ— = πœ•π‘“(π‘₯) πœ•π‘₯ π‘₯=π‘₯βˆ— where π‘₯=π‘₯ 𝑛×1 =π‘₯ 𝑛×1 βˆ— = π‘₯ 1 βˆ— π‘₯ 2 βˆ— π‘₯ 𝑛 βˆ— 𝑖𝑠 π‘Ž π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 10/13/2018 By Nafees Ahamad

3 Gradient of a function…
𝛻𝑓 π‘₯ = πœ•π‘“(π‘₯) πœ• π‘₯ 1 πœ•π‘“(π‘₯) πœ• π‘₯ πœ•π‘“(π‘₯) πœ• π‘₯ 𝑛 π‘₯=π‘₯βˆ— = πœ•π‘“(π‘₯) πœ• π‘₯ 1 πœ•π‘“(π‘₯) πœ• π‘₯ πœ•π‘“(π‘₯) πœ• π‘₯ 𝑛 π‘₯=π‘₯βˆ— 𝑇 So gradient of a scalar function is a column vector (Gradient=> derivative of a scalar function w.r.t vector) Tβ†’Transpose 10/13/2018 By Nafees Ahamad

4 Example 1: Calculate the gradient vector for the function
𝑓 π‘₯ = π‘₯ π‘₯ 1 π‘₯ 2 + 3π‘₯ π‘₯ 1 π‘₯ 2 π‘₯ 3 + π‘₯ 3 3 at π‘₯ 3Γ—1 = 𝑇 Solution πœ•π‘“(π‘₯) πœ• π‘₯ 1 =2 π‘₯ 1 +2 π‘₯ 2 +4 π‘₯ 2 π‘₯ 3 πœ•π‘“(π‘₯) πœ• π‘₯ 2 =2 π‘₯ 1 +6 π‘₯ 2 +4 π‘₯ 1 π‘₯ 3 πœ•π‘“(π‘₯) πœ• π‘₯ 3 =4 π‘₯ 1 π‘₯ 2 +3 π‘₯ 3 2 10/13/2018 By Nafees Ahamad

5 Example 1… So gradient 𝛻𝑓 π‘₯ = πœ•π‘“(π‘₯) πœ• π‘₯ 1 πœ•π‘“(π‘₯) πœ• π‘₯ 2 πœ•π‘“(π‘₯) πœ• π‘₯ π‘₯=π‘₯βˆ— = 2 π‘₯ 1 +2 π‘₯ 2 +4 π‘₯ 2 π‘₯ 3 2 π‘₯ 1 +6 π‘₯ 2 +4 π‘₯ 1 π‘₯ 3 4 π‘₯ 1 π‘₯ 2 +3 π‘₯ π‘₯= π‘₯ βˆ— = = Geometrically , the gradient of a function is normal to the tangent plane at the point x=x* 10/13/2018 By Nafees Ahamad

6 2nd derivative of a real valued function:
First take the derivative of a function (scalar) that means gradient of a function. Which results into a vector. Now again take the derivate of this vector w.r.t vector which will result into a matrix. 𝛻 2 𝑓 π‘₯ = πœ• πœ•π‘“(π‘₯) πœ•π‘₯ πœ•π‘₯ π‘₯=π‘₯βˆ— = πœ• 2 𝑓(π‘₯) πœ•π‘₯ 2 π‘₯=π‘₯βˆ— 𝛻 2 𝑓 π‘₯ = πœ• πœ•π‘₯ πœ•π‘“(π‘₯) πœ• π‘₯ 1 πœ•π‘“(π‘₯) πœ• π‘₯ πœ•π‘“(π‘₯) πœ• π‘₯ 𝑛 π‘₯=π‘₯βˆ— 𝑇 10/13/2018 By Nafees Ahamad

7 2nd derivative of a real valued function…
𝛻 2 𝑓 π‘₯ = πœ• 2 𝑓(π‘₯) πœ• π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ πœ•π‘“(π‘₯) πœ• π‘₯ 1 π‘₯ 𝑛 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ πœ•π‘“(π‘₯) πœ• π‘₯ 2 π‘₯ 𝑛 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ 𝑛 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 2 π‘₯ 𝑛 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 𝑛 π‘₯= π‘₯ βˆ— It is a symmetrical nxn matrix (aij=aji iβ‰ j ) and known Hessian Matrix 10/13/2018 By Nafees Ahamad

8 Example 2 Calculate 2nd derivative of function
𝑓 π‘₯ = π‘₯ π‘₯ 1 π‘₯ 2 + 3π‘₯ π‘₯ 1 π‘₯ 2 π‘₯ 3 + π‘₯ 3 3 at π‘₯ 3Γ—1 = 𝑇 Solution: πœ•π‘“(π‘₯) πœ• π‘₯ 1 =2 π‘₯ 1 +2 π‘₯ 2 +4 π‘₯ 2 π‘₯ 3 πœ•π‘“(π‘₯) πœ• π‘₯ 2 =2 π‘₯ 1 +6 π‘₯ 2 +4 π‘₯ 1 π‘₯ 3 πœ•π‘“(π‘₯) πœ• π‘₯ 3 =4 π‘₯ 1 π‘₯ 2 +3 π‘₯ 3 2 10/13/2018 By Nafees Ahamad

9 Example 2… 𝛻 2 𝑓 π‘₯ = πœ• 2 𝑓(π‘₯) πœ• π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ 2 π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ 2 π‘₯ πœ• 2 𝑓(π‘₯) πœ• π‘₯ π‘₯= π‘₯ βˆ— 10/13/2018 By Nafees Ahamad

10 Example 2… πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 2 =2 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ 2 =2+4 π‘₯ 3
πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 2 =2 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ 2 =2+4 π‘₯ 3 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 1 π‘₯ 3 =4 π‘₯ 2 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 2 2 =6 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 2 π‘₯ 3 =4 π‘₯ 1 πœ• 2 𝑓(π‘₯) πœ• π‘₯ 3 2 =6 π‘₯ 3 𝛻 2 𝑓 π‘₯ = π‘₯ 3 4 π‘₯ π‘₯ π‘₯ 1 4 π‘₯ 2 4 π‘₯ 1 6 π‘₯ 3 π‘₯= π‘₯ βˆ— = 𝑇 𝛻 2 𝑓 π‘₯ = 10/13/2018 By Nafees Ahamad

11 Quadratic functions Suppose we have a function of two variables x1 & x2 The quadratic function for these variables may be 𝑓 π‘₯ 1 , π‘₯ 2 =π‘Ž π‘₯ 1 2 +𝑏 π‘₯ 1 π‘₯ 2 +𝑐 π‘₯ 2 2 βˆ’βˆ’βˆ’(1) Above equation (1) may be written as 𝑓 π‘₯ 1 , π‘₯ 2 = π‘₯ 1 π‘₯ π‘Ž 𝑏 0 𝑐 π‘₯ 1 π‘₯ 2 = π‘₯ 𝑇 𝑃π‘₯ Or 𝑓 π‘₯ 1 , π‘₯ 2 = π‘₯ 1 π‘₯ π‘Ž 0 𝑏 𝑐 π‘₯ 1 π‘₯ 2 = π‘₯ 𝑇 𝑃π‘₯ We can change above diagonal elements and get many (infinite) solution Say Matrix P 10/13/2018 By Nafees Ahamad

12 Quadratic functions … 𝑓 π‘₯ 1 , π‘₯ 2 = π‘₯ 1 π‘₯ 2 π‘Ž βˆ’π‘ 2𝑏 𝑐 π‘₯ 1 π‘₯ 2 = π‘₯ 𝑇 𝑃π‘₯
𝑓 π‘₯ 1 , π‘₯ 2 = π‘₯ 1 π‘₯ π‘Ž βˆ’π‘ 2𝑏 𝑐 π‘₯ 1 π‘₯ 2 = π‘₯ 𝑇 𝑃π‘₯ 𝑓 π‘₯ 1 , π‘₯ 2 = π‘₯ 1 π‘₯ π‘Ž 𝑏 2 𝑏 2 𝑐 π‘₯ 1 π‘₯ 2 = π‘₯ 𝑇 𝑃π‘₯ So Matrix P is not unique P=Symmetrical matrix 10/13/2018 By Nafees Ahamad

13 General Quadratic function
A quadratic function of β€˜n’ variables 𝑓 π‘₯ 1 , π‘₯ 2 , π‘₯ 3 ,… π‘₯ 𝑛 =𝑓 π‘₯ 𝑛×1 = π‘₯ 𝑇 𝑃π‘₯ Where π‘₯= π‘₯ 1 π‘₯ π‘₯ 𝑛 𝑛×1 and Pnxn symmetric matrix 10/13/2018 By Nafees Ahamad

14 General Quadratic function…
Suppose P is not a symmetric matrix then 𝑓 π‘₯ = π‘₯ 𝑇 𝑃π‘₯= 1 2 π‘₯ 𝑇 𝑃π‘₯ π‘₯ 𝑇 𝑃π‘₯ 𝑓 π‘₯ = π‘₯ 𝑇 𝑃π‘₯= 1 2 π‘₯ 𝑇 𝑃π‘₯ π‘₯ 𝑇 𝑃π‘₯ 𝑇 𝑓 π‘₯ = π‘₯ 𝑇 𝑃π‘₯= 1 2 π‘₯ 𝑇 𝑃π‘₯ π‘₯ 𝑇 𝑃 𝑇 π‘₯ ∡ 𝐴𝐡𝐢 𝑇 = 𝐢 𝑇 𝐡 𝑇 𝐴 𝑇 & π‘₯ 𝑇 𝑇 =π‘₯ 𝑓 π‘₯ = π‘₯ 𝑇 𝑃π‘₯= π‘₯ 𝑇 𝑃+ 𝑃 𝑇 2 π‘₯= π‘₯ 𝑇 Qx f(x) will be scalar function i.e f(x)=10 say, so it may be written as F(x)=5+5 1 2 π‘₯ 𝑇 𝑃π‘₯ is scalar so we can take transpose of it Always Symmetrical matrix 10/13/2018 By Nafees Ahamad

15 Next: Now some other concepts like + definite, + semi definite, - definite & - sem definite. 10/13/2018 By Nafees Ahamad


Download ppt "Vector Calculus and Quadratic function"

Similar presentations


Ads by Google