Download presentation
1
SECTION 4.7 COMPOUND INTEREST
2
TERMINOLOGY Principal: Total amount borrowed.
Interest: Money paid for the use of money. Rate of Interest: Amount (expressed as a percent) charged for the use of the principal.
3
SIMPLE INTEREST FORMULA
I = Prt
4
COMPOUND INTEREST FORMULA
Where A is the amount due in t years and P is the principal amount borrowed at an annual interest rate r compounded n times per year.
5
EXAMPLE Find the amount that results from the investment:
$50 invested at 6% compounded monthly after a period of 3 years. $59.83
6
COMPARING COMPOUNDING PERIODS
Investing $1,000 at a rate of 10% compounded annually, quarterly, monthly, and daily will yield the following amounts after 1 year: A = P(1 + r) = 1,000(1 + .1) = $
7
COMPARING COMPOUNDING PERIODS
Investing $1,000 at a rate of 10% compounded annually, quarterly, monthly, and daily will yield the following amounts after 1 year:
8
COMPARING COMPOUNDING PERIODS
The amount increases the more frequently the interest is compounded. Question: What would happen if the number of compounding periods were increased without bound?
9
COMPOUNDING PERIODS INCREASING WITHOUT BOUND
As n approaches infinity, it can be shown that the expression is the same as the number e.
10
CONTINUOUS COMPOUNDED INTEREST
The amount A after t years due to a principal P invested at an annual interest rate r compounded continuously is A = Per t
11
COMPARING COMPOUNDING PERIODS
Investing $1,000 at a rate of 10% compounded daily yields : Investing $1,000 at a rate of 10% compounded continuously yields : A = 1000 e.1 = $
12
EXAMPLE What amount will result from investing $100 at 12% compounded continuously after a period of years. A = Pert A = 100 e.12(3.75) A = $156.83
13
EFFECTIVE RATE Effective Rate is the interest rate that would have to be applied on a simple interest investment in order for the interest earned to be the same as it would be on a compound interest investment. See the table on Page 405
14
EXAMPLE How many years will it take for an initial investment of $25,000 to grow to $80,000? Assume a rate of interest of 7% compounded continuously. 80,000 = 25,000 e.07t 16.6 years
15
PRESENT VALUE Present Value is the principal required on an investment today in order for the investment to grow to an amount A by the end of a specified time period.
16
PRESENT VALUE FORMULAS
For continuous compounded interest, P = A e- rt
17
EXAMPLE Find the present value of $800 after 3.5 years at 7% compounded monthly. $626.61
18
DOUBLING AN INVESTMENT
How long does it take an investment to double in value if it is invested at 10% per annum compounded monthly? Compounded continuously? 6.9 years
19
CONCLUSION OF SECTION 4.7
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.