Presentation is loading. Please wait.

Presentation is loading. Please wait.

Other Bracket expansions

Similar presentations


Presentation on theme: "Other Bracket expansions"— Presentation transcript:

1 Other Bracket expansions
Slideshow 12, Mathematics Mr Richard Sasaki

2 Objectives Review and understand Pascal’s triangle
Expand brackets with fractions Expand brackets with decimals

3 Polynomial Forms As you know, polynomials are in the form…
𝑎 𝑥 𝑚 +𝑏 𝑦 𝑛 +…+𝑐 𝑧 𝑝 And they have a finite number of terms (not infinite). Smaller polynomials have special names. 𝑎 𝑥 𝑛 𝑎 𝑥 𝑚 +𝑏 𝑦 𝑛 𝑎 𝑥 𝑚 +𝑏 𝑦 𝑛 +𝑐 𝑧 𝑝 Monomial Binomial Trinomial The focus of this lesson is multiplying binomials. Last lesson we saw a pattern named Pascal’s Triangle.

4 Binomial Expansion Using Pascal’s triangle, we can expand binomials multiplying one another that are identical like 𝑥+𝑦. Each level relates to expansions of 𝑥+𝑦. 𝑥+𝑦 0 The triangle can continue downwards further. 𝑥+𝑦 1 𝑥+𝑦 2 𝑥+𝑦 3 𝑥+𝑦 4 𝑥+𝑦 5 Hopefully you understand the number pattern! 𝑥+𝑦 6 𝑥+𝑦 7 𝑥+𝑦 8 𝑥+𝑦 9 𝑥+𝑦 10

5 Binomial Expansion The triangle refers to the coefficients of each term. Let’s expand 𝑥+𝑦 4 . 𝑥+𝑦 4 = 𝑥 𝑥 3 𝑦+ 𝑥 2 𝑦 2 + 𝑥 𝑦 3 + 𝑦 4 4 6 4 When we write polynomials, it is best to write them with powers of 𝑥 decreasing. 2𝑥+𝑦 3 = (2𝑥) 3 + (2 𝑥) 2 𝑦+ (2𝑥) 𝑦 2 + 𝑦 3 3 3 Here, we substituted 𝑥 for 2𝑥 and 𝑦 for 𝑦. =8 𝑥 3 +3∙4 𝑥 2 𝑦+3∙2𝑥 𝑦 2 + 𝑦 3 =8 𝑥 𝑥 2 𝑦+6𝑥 𝑦 2 + 𝑦 3

6 Answers 1 𝑎 5 +5 𝑎 4 𝑏+10 𝑎 3 𝑏 2 +10 𝑎 2 𝑏 3 +5𝑎 𝑏 4 + 𝑏 5
𝑎 5 +5 𝑎 4 𝑏+10 𝑎 3 𝑏 𝑎 2 𝑏 3 +5𝑎 𝑏 4 + 𝑏 5 8 𝑥 𝑥 2 𝑦+24𝑥 𝑦 2 +8 𝑦 3 𝑥 4 −4 𝑥 3 𝑦+6 𝑥 2 𝑦 2 −4𝑥 𝑦 3 + 𝑦 4 8 𝑥 3 −12 𝑥 2 𝑦+6𝑥 𝑦 2 − 𝑦 3 16 𝑥 𝑥 3 𝑦+24 𝑥 2 𝑦 2 +8𝑥 𝑦 3 + 𝑦 4 27 𝑥 𝑥 2 𝑦+36𝑥 𝑦 2 +8 𝑦 3 𝑥 10 −5 𝑥 8 𝑦 𝑥 6 𝑦 4 −10 𝑥 4 𝑦 6 +5 𝑥 2 𝑦 8 − 𝑦 10 8 𝑥 𝑥 4 𝑦+6 𝑥 2 𝑦 2 + 𝑦 3 81 𝑥 4 −216 𝑥 3 𝑦+216 𝑥 2 𝑦 2 −96𝑥 𝑦 𝑦 4

7 Brackets with Fractions
Sometimes, we also need to multiply binomials with fractions. The process is the same, just we need to think about fractions! Example Expand 𝑥 𝑥 = 𝑥 2 +2∙𝑥∙ = 𝑥 2 +3𝑥+ 9 4 Note: Here we use the principle 𝑥+𝑦 2 = 𝑥 2 +2𝑥𝑦+ 𝑦 2

8 Other Brackets with Fractions
Obviously brackets that aren’t squared work as you would expect. Example Expand 𝑥+ 2𝑎 3 𝑥+ 3𝑎 4 . 𝑥+ 2𝑎 3 𝑥+ 3𝑎 4 = 𝑥 2 + 2𝑎𝑥 3 + 3𝑎𝑥 4 + 2𝑎 3 ∙ 3𝑎 4 = 𝑥 2 + 8𝑎𝑥 𝑎𝑥 𝑎 2 12 = 𝑥 𝑎𝑥 𝑎 2 2 Note: Here we use the principle 𝑥+𝑎 𝑥+𝑏 = 𝑥 2 +𝑎𝑥+𝑏𝑥+𝑎𝑏

9 𝑥 2 +𝑥+ 1 4 𝑥 2 − 𝑥 𝑥 2 +𝑎𝑥+ 𝑎 2 4 𝑥 2 + 3𝑥 𝑥 2 − 4𝑥 𝑥 2 − 𝑎𝑥 2 + 𝑎 2 16 𝑥 2 − 2𝑥 𝑎 + 1 𝑎 2 𝑥 2 − 6𝑥 𝑎 + 9 𝑎 2 𝑥 2 − 4𝑥 3𝑎 𝑎 2 𝑥 2 − 8𝑥 5𝑎 𝑎 2 𝑥 2 + 𝑥 𝑥 2 + 5𝑎𝑥 6 + 𝑎 2 6 𝑥 2 + 𝑥 9 − 2 27 𝑥 𝑥 𝑥 2 − 1 𝑎 2 𝑥 𝑎𝑥 6 + 𝑎 2 𝑥 2 + 𝑎𝑥 2 + 2𝑥 𝑎 +1 𝑥 2 − 23𝑥 𝑥 2 − 𝑎𝑥 28 − 𝑎 2 14 𝑥 2 + 𝑥 6𝑎 − 1 6 𝑎 2

10 Brackets with Decimals
Multiplying decimals isn’t hard! Example Expand 𝑥+0.4 𝑥−0.6 . 𝑥+0.4 𝑥−0.6 = = 𝑥 𝑥−0.6𝑥−(0.4∙0.6) = 𝑥 2 −0.2𝑥−0.24

11 Dealing with 𝑥−coefficients
𝑥−coefficients other than 1 may make the calculations messier. Example Expand 2𝑥+ 2𝑎 3 3𝑥− 3𝑎 5 . 2𝑥+ 2𝑎 3 3𝑥− 3𝑎 5 = 6 𝑥 2 + 2𝑎 3 ∙3𝑥− 3𝑎 5 ∙2𝑥− 2𝑎 3 ∙ 3𝑎 5 = 6𝑥 2 +2𝑎𝑥− 6𝑎𝑥 5 − 6 𝑎 2 15 = 6𝑥 𝑎𝑥 5 − 6𝑎𝑥 5 − 2 𝑎 2 5 = 6𝑥 2 + 4𝑎𝑥 5 − 2 𝑎 2 5

12 𝑥 2 +𝑥+0.25 𝑥 2 −0.2𝑥+0.01 𝑥 𝑥+0.09 𝑥 2 −5𝑥+6.25 𝑥 𝑎𝑥+1.96 𝑎 2 𝑥 2 −0.09 𝑥 𝑥+0.08 𝑥 2 −2.25 𝑥 𝑎𝑥−4.42 𝑎 2 𝑥 𝑎𝑥−4.9𝑥−18.62𝑎 4𝑥 2 −2𝑥+0.25 9𝑥 𝑥+0.04 4𝑥 2 + 8𝑥 4𝑥 2 −2𝑎𝑥+ 𝑎 2 4 9𝑥 2 − 1 4 6𝑥 2 + 𝑎𝑥 3 − 𝑎 2 9 2𝑥 2 −0.1𝑥−0.03 8𝑥 𝑥+0.45 15𝑥 2 − 5𝑎𝑥 14 − 5 𝑎 2 14 6𝑥 2 − 23𝑥 28 − 15 28


Download ppt "Other Bracket expansions"

Similar presentations


Ads by Google