Download presentation
Presentation is loading. Please wait.
1
Latest Results of HDAC analysis
Pascal Hedelt(1), Yuichi Ito(2), H. U. Keller(2), H. Lammer(5), Heike Rauer(1,3), Ralf Reulke(4), P. Wurz(6), L. Esposito(7) Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Max Planck Institut für Sonnensystemforschung (MPS) Zentrum für Astronomie und Astrophysik, Technische Universität Berlin (TUB) Institut für Verkehrsforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften Abteilung für Weltraumforschung und Planetologie, Universität Bern Laboratory for Atmospheric and Space Physics, University of Colorado
2
Aims & Scope Using HDAC data gathered during T9, the distribution of atomic hydrogen in Titan‘s exosphere is investigated: Calculate exospheric emission of resonantly scattered Hydrogen Ly-Alpha from Titan Simulate HDAC measurement during the Cassini/Titan T9 encounter Little is known about Titan‘s hydrogen exosphere Vary input parameters Determine exospheric parameters UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 2 2 2 2 2 2 2
3
HDAC noise reduction Problem: Undersampled CELL OFF data
UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 3 3 3 3 3 3 3
4
Noise reduction Problem in difference signal:
UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 4 4 4 4 4 4 4 4
5
Noise reduction Solution: Take average of datapoints nearby
UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 5 5 5 5 5 5 5 5
6
Parameter Variation Exosphere hydrogen distribution:
Particle Monte Carlo model (Wurz & Lammer, 2003) Chamberlain model (Chamberlain, 1963) Exospheric temperature Exobase hydrogen density Fit to data UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 6 6 6 6 6 6 6 6 6
7
Profile Variation Methane Hydrogen Particle MC model Chamberlain model
Exobase UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt 7 7 7 7 7 7 7 7 7
8
Model description Chamberlain model Particle MC model
Maxwellian velocity distribution at exobase Use Liouville theorem to derive exospheric densities Static contribution of ballistic/escaping orbits Particle MC model Dynamic MC approach, single particles started at exobase with random energy & ejection angle Independent of partition functions UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt 8 8 8 8 8 8 8 8 8 8
9
Profile Variation Exobase H density: 1x104 cm-3
UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 9 9 9 9 9 9 9 9 9 9
10
Temperature Variation
Exosphere temperatures in the literature: De la Haye et al. (2008): 152.8 ± 4.6 K (Ta) 149.0 ± 9.2 K (Tb) 157.4 ± 4.8 (T5) UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt 10 10 10 10 10 10 10 10 10 10 10 10
11
Temperature Variation
Exobase H density: 8x104 cm-3, Particle MC model profile UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt 11 11 11 11 11 11 11 11 11 11 11 11
12
Density Variation Exobase densities in the literature
nH = 4.2x103 cm-3 (Yung, model) nH = 8x103 cm-3 (Toublanc, model) nH = 1x104 cm-3 (Broadfoot, et al., data) nH = 8x104 cm-3 (De la Haye, et al., model) UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 12 12 12 12 12 12 12 12 12 12 12
13
Density Variation UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 13 13 13 13 13 13 13 13 13 13 13
14
Discussion: Why signal decreases when increasing density?
In the model, HDAC flyby takes place within model boundaries Model boundaries: 700 – 30,000 km HDAC: 25,468 km (Start) – 12,985 km (lowest) Increasing density More photons scattered above HDAC Fewer photons arriving and scattered below Decreasing signal UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt 14 14 14 14 14 14 14 14 14 14 14 14
15
Fit to data UVIS Team Meeting 2009 Pascal Hedelt
UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt 15 15 15 15 15 15
16
Best fitting H profiles
Chamberlain profile: nExo,H= 1x104 cm-3 Particle MC profile: nExo,H= 8x104 cm-3 Cassini/HDAC measuring altitude UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 16 16
17
Discussion HDAC signal strength depends on H column density above HDAC
Both profiles nearly parallel in this region Measurement nearly independent of density distribution below
18
Summary & Conclusion Using HDAC data we are able to determine atomic
Plausible agreement between model and data Exospheric temperature has no influence Best fitting hydrogen density at lowest measurement altitude (12,985 km): approx. 400 cm-3 Depending on hydrogen density profile, exobase values vary strongly Best fit using Chamberlain model: nH,Exobase= 1.0x104 cm-3 validated for Earth only, static model Best fit using Particle MC model: nH,Exobase= 8.0x104 cm-3 validated for Mercury & Mars, dynamic model Better choice (?) From latest calculations (De la Haye, et al. 2007): nH,Exobase= 8.0x104 cm-3 Good agreement with Particle MC model distribution Using HDAC data we are able to determine atomic hydrogen distribution in Titan’s exosphere!!! UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt UVIS Team Meeting Pascal Hedelt 18
19
Thanks for your attention!
UVIS Team Meeting Pascal Hedelt
20
Density regions crossed by HDAC
UVIS Team Meeting Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt 20 20 20
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.