Presentation is loading. Please wait.

Presentation is loading. Please wait.

Expert Meeting on the Assessment of Contributions to Climate Change Takanobu KOSUGI, Toshimasa TOMODA, Keigo AKIMOTO Research Institute of Innovative Technology.

Similar presentations


Presentation on theme: "Expert Meeting on the Assessment of Contributions to Climate Change Takanobu KOSUGI, Toshimasa TOMODA, Keigo AKIMOTO Research Institute of Innovative Technology."— Presentation transcript:

1 Expert Meeting on the Assessment of Contributions to Climate Change Takanobu KOSUGI, Toshimasa TOMODA, Keigo AKIMOTO Research Institute of Innovative Technology for the Earth (RITE) Expert Meeting on the Assessment of Contributions to Climate Change UK Met Office, UK September 25 - 27, 2002 DNE21 Results for Phases 1 & 2

2 Interrelations in DNE21Model

3 Outline of the Climate Change Model Simple climate change model was constructed based on MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change). Carbon circulation (both oceanic and terrestrial), atmospheric concentrations of other GHGs, their radiative forcings, temperature rises of 4 representative points (north and south hemispheres, ocean and land), sea level changes of north and south hemispheres (energy balance of upwelling stream among one dimensional 40 layers) etc. are calculated. Cooling effect of SOx aerosol is taken into account.

4 Calculating Steps in Climate Change Model

5 Phase 1 Study Assumptions / Conditions –Historical emissions data: CDIAC database –Future emissions scenario: A2 of the IPCC SRES –Timeframe: 1765 to 2100 –Model parameters: Reference case as specified in T ERMS OF REFERENCE Cumulative CO 2 emissions

6 Results for Phase 1 CO 2 concentrationCH 4 and N 2 O concentrations Radiative forcing (relative to 1990)Global-average surface air temperature change

7 Phase 2 Study Assumptions / Conditions: –Historical emissions data: CDIAC database –Future emissions scenarios: A2, B1 and A1FI, of the IPCC SRES (For CO 2 emissions only. Non-CO 2 GHGs emissions are assumed to be zero.) –Emissions start year: 1991 –Emissions end years: 2010, 2050 and 2100 –Countries/regions: OECD90, REF, ASIA and ALM used in the IPCC SRES. –Model parameters: Reference case only (same as Phase 1)

8 Methodology of Attribution Calculation 1.Calculate emission effect V(t) (e.g., temperature change) of year t assuming that all the regions emit anthropogenic CO 2 according to Scenarios. 2.Calculate emission effect V R (t) assuming that one of the regions R does not emit anthropogenic CO 2 during the period between the emissions start year and an emissions end year. 3.Contribution of the region Rs emissions for the period is the difference: V(t) – V R (t). Phase 2: Minimization of non-linearity error Avoidance of non-anthropogenic emission effect N OTE

9 CO 2 Emissions Accumulated in Atmosphere A2 ScenarioA2 Scenario Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 26 15 2050 35 11 33 21 2100 28 10 36 26 Phase 2 results: (1) Emissions end year: 2010 (2) Emissions end year: 2050(3) Emissions end year: 2100

10 CO 2 Concentration A2 ScenarioA2 Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 26 15 2050 35 11 33 21 2100 28 9 36 27 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

11 Radiative Forcing of CO 2 A2 ScenarioA2 Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 26 15 2050 35 11 33 21 2100 27 9 37 27 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

12 Global-Average Temperature Change A2 ScenarioA2 Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 26 15 2050 35 11 33 21 2100 27 9 37 27 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

13 Global-Average Sea Level Rise A2 ScenarioA2 Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 26 15 2050 35 11 33 21 2100 30 9 36 25 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

14 CO 2 Emissions Accumulated in Atmosphere B1 ScenarioB1 Scenario Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 44 14 26 16 2050 30 9 31 30 2100 24 9 30 37 Phase 2 results: (2) Emissions end year: 2050(3) Emissions end year: 2100 (1) Emissions end year: 2010

15 CO 2 Concentration B1 ScenarioB1 Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 44 14 26 16 2050 29 9 31 31 2100 23 8 30 39 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

16 Radiative Forcing of CO 2 B1 ScenarioB1 Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 44 13 26 17 2050 29 9 31 31 2100 23 8 29 40 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

17 Global-Average Temperature Change B1 ScenarioB1 Scenario Phase 2 results: (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050 Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 44 14 26 16 2050 29 9 31 31 2100 23 8 30 39

18 Global-Average Sea Level Rise B1 ScenarioB1 Scenario Phase 2 results: (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050 Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 44 14 26 16 2050 30 9 31 30 2100 25 9 30 36

19 CO 2 Emissions Accumulated in Atmosphere A1FI ScenarioA1FI Scenario Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 44 14 26 16 2050 30 9 31 30 2100 24 9 30 37 Phase 2 results: (2) Emissions end year: 2050(3) Emissions end year: 2100 (1) Emissions end year: 2010

20 CO 2 Concentration A1FI ScenarioA1FI Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 27 14 2050 30 12 39 19 2100 25 10 38 27 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

21 Radiative Forcing of CO 2 A1FI ScenarioA1FI Scenario Phase 2 results: Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 27 14 2050 30 12 39 19 2100 24 10 39 27 (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050

22 Global-Average Temperature Change A1FI ScenarioA1FI Scenario Phase 2 results: (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050 Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 27 14 2050 30 12 39 19 2100 25 10 38 27

23 Global-Average Sea Level Rise A1FI ScenarioA1FI Scenario Phase 2 results: (1) Emissions end year: 2010 (3) Emissions end year: 2100(2) Emissions end year: 2050 Attribution (%) in 2100 OECD90 REF ASIA ALM Emissions end year 2010 45 14 27 14 2050 31 12 39 18 2100 26 10 39 25


Download ppt "Expert Meeting on the Assessment of Contributions to Climate Change Takanobu KOSUGI, Toshimasa TOMODA, Keigo AKIMOTO Research Institute of Innovative Technology."

Similar presentations


Ads by Google