Download presentation
Presentation is loading. Please wait.
1
Functions and Their Graphs
Honors Calculus Keeper 4
2
Evaluating Functions To evaluate a function, substitute the input (the given number or expression) for the function's variable (place holder, x). Replace the x with the number or expression
3
Example: Evaluating Functions
Given: 𝑓 𝑥 =3𝑥−5 Find: 𝑓(4)
4
Example: Evaluating Functions
Given: 𝑓 𝑥 = 𝑥 2 +7 Find: 𝑓(3𝑎)
5
Example: Evaluating Functions
Given: 𝑓 𝑥 = 𝑥 2 +7 Find: 𝑓(𝑏−1)
6
Example: Evaluating Functions
Given: 𝑓 𝑥 = 𝑥 2 +7 Find: 𝑓 𝑥+ℎ −𝑓 𝑥 ℎ
7
Domain
8
Range
9
Find the Domain and Range of the Function
𝑓 𝑥 = 𝑥−1
10
Find the Domain and Range of the Function
𝑓 𝑥 =4−𝑥
11
Find the Domain and Range of the Function
𝑓 𝑥 = 4 𝑥
12
Find the Domain and Range of the Function
𝑓 𝑥 = 𝑥−1
13
Find the Domain and Range of the Function
𝑓 𝑥 = 1 2 𝑥 3 +2
14
Find the Domain and Range of the Function
𝑓 𝑥 = 9− 𝑥 2
15
Piecewise Functions A function that is defined using two or more equations for different intervals of the domain is called a piecewise function.
16
Evaluating Piecewise Functions
Evaluate 𝑓 𝑥 when (a) 𝑥=0 (b) 𝑥=2 and (c) 𝑥=4 𝑓 𝑥 = 𝑥+2, 𝑖𝑓 𝑥<2 2𝑥+1, 𝑖𝑓 𝑥≥2
17
Evaluating Piecewise Functions
Evaluate 𝑓 𝑥 when (a) 𝑥=67 (b) 𝑥=72 and (c) 𝑥=65 𝑓 𝑥 = 1.6𝑥−41.6, 𝑖𝑓 63<𝑥<66 3𝑥−132, 𝑖𝑓 66≤𝑥≤68 2𝑥−66, 𝑖𝑓 𝑥>68
18
Graphing Piecewise Functions
𝑓 𝑥 = −3𝑥+2, 𝑥≤ 𝑥−4, 𝑥>2
19
Graphing Piecewise Functions
𝑓 𝑥 = 4, 𝑥≤−2 𝑥 2 , −2<𝑥<2 4, 𝑥≥2
20
Graphing Piecewise Functions
𝑓 𝑥 = 3𝑥+12, 𝑖𝑓 𝑥<−3 |𝑥|, 𝑖𝑓 −3≤𝑥<5 −3𝑥+12, 𝑖𝑓 𝑥≥5
21
Graphing Piecewise Functions
𝑓 𝑥 = 𝑥 2 −4, 𝑖𝑓 𝑥<−2 𝑥+6 , 𝑖𝑓 −2≤𝑥≤ 𝑥−5, 𝑖𝑓 𝑥>3
22
Example. Write the equation for the graph shown.
24
Rules for Transformation of Functions
25
Example: Describe the Transformation and Sketch the Graph
𝑔 𝑥 = 𝑥 2 −1
26
Example: Describe the Transformation and Sketch the Graph
𝑓 𝑥 =2|𝑥−1|
27
Example: Describe the Transformation and Sketch the Graph
𝑔 𝑥 =−2 𝑥
28
Example: Describe the Transformation and Sketch the Graph
𝑔 𝑥 =−3𝑥−2
29
Example: Describe the Transformation and Sketch the Graph
𝑔 𝑥 =− 𝑥 2 +1
30
Example: Describe the Transformation and Sketch the Graph
𝑔 𝑥 =−|𝑥−2|
31
Example: write the Equation Described
Absolute Value – vertical shift up 5, horizontal shift right 3
32
Example: write the Equation Described
Linear – vertical stretch/compression by 2 5
33
Example: write the Equation Described
Quadratic – vertical stretch by 5, horizontal shift left 8, reflected over the x- axis.
34
Combination of Functions
35
Example 𝑓 𝑥 = 𝑥 𝑥 𝑔 𝑥 =−3𝑥+2 Find (𝑔⋅𝑓)(𝑥)
36
Example 𝑓 𝑥 = 𝑥 𝑥 𝑔 𝑥 =−3𝑥+2 Find (𝑓+𝑔)(𝑥)
37
Example 𝑓 𝑥 = 𝑥 𝑥 𝑔 𝑥 =−3𝑥+2 Find (𝑓−𝑔)(𝑥)
38
Example 𝑓 𝑥 = 𝑥 𝑥 𝑔 𝑥 =−3𝑥+2 Find 𝑔 𝑓 (𝑥)
39
Composition of Functions
40
Example 𝑓 𝑥 = 𝑥 𝑥 𝑔 𝑥 =−3𝑥+2 Find (𝑔∘𝑓)(𝑥)
41
Example 𝑓 𝑥 = 𝑥 𝑥 𝑔 𝑥 =−3𝑥+2 Find (𝑓∘𝑔)(𝑥)
42
Example 𝑓 𝑥 = 𝑥 𝑥 𝑔 𝑥 =−3𝑥+2 Find (𝑔∘𝑔)(𝑥)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.