Presentation is loading. Please wait.

Presentation is loading. Please wait.

F(x) = x2 x > 3 Find the range of f(x) f(x) > 9.

Similar presentations


Presentation on theme: "F(x) = x2 x > 3 Find the range of f(x) f(x) > 9."β€” Presentation transcript:

1 f(x) = x2 x > 3 Find the range of f(x) f(x) > 9

2 Find f-1(x) and state its domain
f(x) = x2 + 6x x > 0 Find f-1(x) and state its domain 𝑓 βˆ’1 π‘₯ = π‘₯+1 βˆ’3 Domain x > 8

3 f(x) = x2 – g(x) = e2x Find gf(x) fg(x) 𝑒 2 π‘₯ 2 βˆ’6 𝑒 4π‘₯ βˆ’3

4 Define the transformations
f(x) = x2 Define the transformations 𝑓 π‘₯ =2βˆ’ π‘₯ 2 π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘› 0 βˆ’2 π‘“π‘œπ‘™π‘™π‘œπ‘€π‘’π‘‘ 𝑏𝑦 π‘Ž π‘Ÿπ‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑛 π‘‘β„Žπ‘’ π‘₯βˆ’π‘Žπ‘₯𝑖𝑠 or π‘Ÿπ‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑛 π‘‘β„Žπ‘’ π‘₯βˆ’π‘Žπ‘₯𝑖𝑠 π‘“π‘œπ‘™π‘™π‘œπ‘€π‘’π‘‘ 𝑏𝑦 π‘Ž π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘› 0 2

5 Define the transformations
f(x) = x2 Define the transformations 𝑓 π‘₯ =2 π‘₯ 2 βˆ’4 π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘› 0 βˆ’2 π‘“π‘œπ‘™π‘™π‘œπ‘€π‘’π‘‘ 𝑏𝑦 π‘Ž π‘ π‘‘π‘Ÿπ‘’π‘‘π‘β„Ž π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ 2 π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™ π‘‘π‘œ π‘‘β„Žπ‘’ π‘¦βˆ’π‘Žπ‘₯𝑖𝑠 Or π‘ π‘‘π‘Ÿπ‘’π‘‘π‘β„Ž π‘ π‘π‘Žπ‘™π‘’ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ 2 π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™ π‘‘π‘œ π‘‘β„Žπ‘’ π‘¦βˆ’π‘Žπ‘₯𝑖𝑠 π‘“π‘œπ‘™π‘™π‘œπ‘€π‘’π‘‘ 𝑏𝑦 π‘Ž π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘› 0 βˆ’4

6 Differentiate with respect to x
𝑒 π‘₯ 2 2cos Β½x e3x βˆ’sin⁑ π‘₯ 2 3 𝑒 3π‘₯ ⁑ 2π‘₯ 𝑒 π‘₯ 2 ⁑

7 Sketch the graph of y = 2 𝑒 βˆ’2π‘₯

8 Sketch the graph of y = 3ln(x+2)

9 Sketch the graph of y = |ln xβˆ’2 |

10 Sketch the graph of y = |9 – 4x2|

11 Sketch the graph of y = e|2x|

12 Differentiate with respect to x
βˆ’ 2π‘₯ 2βˆ’ π‘₯ 2 ⁑ 2 π‘₯ ⁑ 18x(3x2+4)2⁑ (3x2 + 4)3 ln (2- x2) ln (3x2) e5-x βˆ’ 𝑒 5βˆ’π‘₯

13 x2e2x = 2xe2x Solve π‘₯ 2 𝑒 2π‘₯ π‘₯ 𝑒 2π‘₯ =2 so x = 2
There are two solutions so what is wrong with this method? π‘₯ 2 𝑒 2π‘₯ π‘₯ 𝑒 2π‘₯ = so x = 2

14 Solve x2e2x = 2xe2x x2e2x - 2xe2x = 0 xe2x (x – 2)=0 x = 0 x = 2

15 Sketch the graph of y = sin-1(x)

16 Sketch the graph of y = cos-1(x-1)

17 y = 𝑒 3π‘₯ ( π‘₯ 2 βˆ’2) 1 3 Find 𝑑𝑦 𝑑π‘₯ 2 3 π‘₯𝑒 3π‘₯ ( π‘₯ 2 βˆ’2) βˆ’ 𝑒 3π‘₯ ( π‘₯ 2 βˆ’2) 1 3

18 y = 6π‘₯βˆ’1 𝑠𝑖𝑛2π‘₯ Find 𝑑𝑦 𝑑π‘₯ 6𝑠𝑖𝑛2π‘₯βˆ’2 6π‘₯βˆ’1 π‘π‘œπ‘ 2π‘₯ 𝑠𝑖𝑛 2 2π‘₯

19 π·π‘œπ‘›β€²π‘‘ π‘“π‘œπ‘Ÿπ‘”π‘’π‘‘ +𝑐 2 2π‘₯+3 4sin 2x e3x 1 3 𝑒 3π‘₯ βˆ’2π‘π‘œπ‘ 2π‘₯ ln⁑|2π‘₯+3|
Integrate with respect to x 2 2π‘₯+3 4sin 2x e3x 1 3 𝑒 3π‘₯ βˆ’2π‘π‘œπ‘ 2π‘₯ ln⁑|2π‘₯+3| π·π‘œπ‘›β€²π‘‘ π‘“π‘œπ‘Ÿπ‘”π‘’π‘‘ +𝑐

20 π·π‘œπ‘›β€²π‘‘ π‘“π‘œπ‘Ÿπ‘”π‘’π‘‘ +𝑐 4π‘₯ (1+π‘₯ 2 ) 1 1βˆ’2π‘₯ 4 (1+2π‘₯) 2 βˆ’ 2 1+2π‘₯ 2ln⁑(1+ π‘₯ 2 )
Integrate with respect to x βˆ’ 2 1+2π‘₯ 2ln⁑(1+ π‘₯ 2 ) βˆ’ 1 2 ln⁑|1βˆ’2π‘₯| 4π‘₯ (1+π‘₯ 2 ) 1 1βˆ’2π‘₯ 4 (1+2π‘₯) 2 π·π‘œπ‘›β€²π‘‘ π‘“π‘œπ‘Ÿπ‘”π‘’π‘‘ +𝑐

21 Don’t forget the final statement
y = 3ln(3e – x) intersects the line y = x at x = ∝ . Show that ∝ between 4 and 5 Don’t forget the final statement

22 STAIRCASE x1 x2 x3

23 Numerical Integration Simpsons rule 0 πœ‹ π‘₯𝑠𝑖𝑛2π‘₯ 𝑑π‘₯ with 5 ordinates
Is your calculator in radians? If possible work with exact values…. Show values in a table. Write the formula out with your values substituted in

24 Numerical Integration Mid-ordinate rule 0 πœ‹ π‘₯𝑠𝑖𝑛2π‘₯ 𝑑π‘₯ with 4 strips
What are the x-values you would use ?


Download ppt "F(x) = x2 x > 3 Find the range of f(x) f(x) > 9."

Similar presentations


Ads by Google