Download presentation
Presentation is loading. Please wait.
Published byMatthew Greene Modified over 6 years ago
1
f(x) = x2 x > 3 Find the range of f(x) f(x) > 9
2
Find f-1(x) and state its domain
f(x) = x2 + 6x x > 0 Find f-1(x) and state its domain π β1 π₯ = π₯+1 β3 Domain x > 8
3
f(x) = x2 β g(x) = e2x Find gf(x) fg(x) π 2 π₯ 2 β6 π 4π₯ β3
4
Define the transformations
f(x) = x2 Define the transformations π π₯ =2β π₯ 2 π‘ππππ πππ‘πππ 0 β2 ππππππ€ππ ππ¦ π πππππππ‘πππ ππ π‘βπ π₯βππ₯ππ or πππππππ‘πππ ππ π‘βπ π₯βππ₯ππ ππππππ€ππ ππ¦ π π‘ππππ πππ‘πππ 0 2
5
Define the transformations
f(x) = x2 Define the transformations π π₯ =2 π₯ 2 β4 π‘ππππ πππ‘πππ 0 β2 ππππππ€ππ ππ¦ π π π‘πππ‘πβ ππππ‘ππ 2 ππππππππ π‘π π‘βπ π¦βππ₯ππ Or π π‘πππ‘πβ π ππππ ππππ‘ππ 2 ππππππππ π‘π π‘βπ π¦βππ₯ππ ππππππ€ππ ππ¦ π π‘ππππ πππ‘πππ 0 β4
6
Differentiate with respect to x
π π₯ 2 2cos Β½x e3x βsinβ‘ π₯ 2 3 π 3π₯ β‘ 2π₯ π π₯ 2 β‘
7
Sketch the graph of y = 2 π β2π₯
8
Sketch the graph of y = 3ln(x+2)
9
Sketch the graph of y = |ln xβ2 |
10
Sketch the graph of y = |9 β 4x2|
11
Sketch the graph of y = e|2x|
12
Differentiate with respect to x
β 2π₯ 2β π₯ 2 β‘ 2 π₯ β‘ 18x(3x2+4)2β‘ (3x2 + 4)3 ln (2- x2) ln (3x2) e5-x β π 5βπ₯
13
x2e2x = 2xe2x Solve π₯ 2 π 2π₯ π₯ π 2π₯ =2 so x = 2
There are two solutions so what is wrong with this method? π₯ 2 π 2π₯ π₯ π 2π₯ = so x = 2
14
Solve x2e2x = 2xe2x x2e2x - 2xe2x = 0 xe2x (x β 2)=0 x = 0 x = 2
15
Sketch the graph of y = sin-1(x)
16
Sketch the graph of y = cos-1(x-1)
17
y = π 3π₯ ( π₯ 2 β2) 1 3 Find ππ¦ ππ₯ 2 3 π₯π 3π₯ ( π₯ 2 β2) β π 3π₯ ( π₯ 2 β2) 1 3
18
y = 6π₯β1 π ππ2π₯ Find ππ¦ ππ₯ 6π ππ2π₯β2 6π₯β1 πππ 2π₯ π ππ 2 2π₯
19
π·ππβ²π‘ ππππππ‘ +π 2 2π₯+3 4sin 2x e3x 1 3 π 3π₯ β2πππ 2π₯ lnβ‘|2π₯+3|
Integrate with respect to x 2 2π₯+3 4sin 2x e3x 1 3 π 3π₯ β2πππ 2π₯ lnβ‘|2π₯+3| π·ππβ²π‘ ππππππ‘ +π
20
π·ππβ²π‘ ππππππ‘ +π 4π₯ (1+π₯ 2 ) 1 1β2π₯ 4 (1+2π₯) 2 β 2 1+2π₯ 2lnβ‘(1+ π₯ 2 )
Integrate with respect to x β 2 1+2π₯ 2lnβ‘(1+ π₯ 2 ) β 1 2 lnβ‘|1β2π₯| 4π₯ (1+π₯ 2 ) 1 1β2π₯ 4 (1+2π₯) 2 π·ππβ²π‘ ππππππ‘ +π
21
Donβt forget the final statement
y = 3ln(3e β x) intersects the line y = x at x = β . Show that β between 4 and 5 Donβt forget the final statement
22
STAIRCASE x1 x2 x3
23
Numerical Integration Simpsons rule 0 π π₯π ππ2π₯ ππ₯ with 5 ordinates
Is your calculator in radians? If possible work with exact valuesβ¦. Show values in a table. Write the formula out with your values substituted in
24
Numerical Integration Mid-ordinate rule 0 π π₯π ππ2π₯ ππ₯ with 4 strips
What are the x-values you would use ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.