Presentation is loading. Please wait.

Presentation is loading. Please wait.

Functions composite.

Similar presentations


Presentation on theme: "Functions composite."β€” Presentation transcript:

1 Functions composite

2 Starter: find the inverse functions of
Composite functions KUS objectives BAT Find composite functions BAT Find the domain and range of composite functions Starter: find the inverse functions of 𝑓 π‘₯ = 1 π‘₯βˆ’2 𝑔 π‘₯ =2 (π‘₯βˆ’7) 2 β„Ž π‘₯ = ( sin π‘₯ βˆ’1) 2 +3

3 Find the cost of using 100 cubic feet
WB1 A gas meter indicates the amount of gas in cubic feet used by a consumer. The number of therms of heat from x cubic feet of gas is given by the function f where 𝑓 π‘₯ = π‘₯, π‘₯ > 0 A particular gas company’s charge in Β£ for t therms is given by the function g where 𝑔 𝑑 = 𝑑 Find the cost of using 100 cubic feet Find a single rule for working out the cost given the number of cubic feet of gas used Β£56.36 gf(x) = x + 15

4 A composite function is a β€˜function of a function’ e.g.
Notes A composite function is a β€˜function of a function’ e.g. 𝒇 𝒙 =πŸπ’™+𝟏 π’ˆ 𝒙 = 𝒙 𝟐 𝒙 3 5 7 9 … 𝒇(𝒙) 9 25 49 81 … π’ˆπ’‡(𝒙) 1 2 3 4 …

5 𝒇 𝒙 =πŸπ’™+𝟏 π’ˆ 𝒙 = 𝒙 𝟐 1 2 3 4 … 𝒙 5 7 9 𝒇(𝒙) 25 49 81 π’ˆπ’‡(𝒙)
WB2 𝑓 π‘₯ =2π‘₯+1 and 𝑔 π‘₯ = π‘₯ a) find 𝑔𝑓 π‘₯ and 𝑓𝑔 π‘₯ b) find 𝑔𝑓 and 𝑓𝑔 4 1 2 3 4 … 𝒙 5 7 9 𝒇(𝒙) 25 49 81 π’ˆπ’‡(𝒙) 𝒇 𝒙 =πŸπ’™+𝟏 π’ˆ 𝒙 = 𝒙 𝟐 π’ˆπ’‡ 𝒙 = π’ˆ πŸπ’™+𝟏 = πŸπ’™+𝟏 𝟐 π’ˆπ’‡ πŸ’ =π’ˆ πŸ— = πŸ–πŸ and π’‡π’ˆ 𝒙 =𝒇 𝒙 𝟐 =𝟐 𝒙 𝟐 +𝟏 π’‡π’ˆ πŸ’ =𝒇 πŸπŸ” =πŸ‘πŸ‘

6 a) 𝑔𝑓 π‘₯ 𝑔𝑓 0 b) 𝑓𝑔 π‘₯ 𝑓𝑔 0 Find: 𝑓𝑔 π‘₯ =3 𝒙 πŸ‘ βˆ’1 𝑓𝑔 0 =0βˆ’1=βˆ’1 𝑓𝑔 π‘₯ =π‘₯βˆ’1
WB3ab 𝒇 𝒙 =πŸ‘π’™βˆ’πŸ π’ˆ 𝒙 = 𝒙 πŸ‘ Find: a) 𝑔𝑓 π‘₯ 𝑔𝑓 0 𝑔𝑓 π‘₯ = (3π‘₯βˆ’1) 3 𝑔𝑓 0 = (3(0)βˆ’1) 3 =βˆ’ 1 3 b) 𝑓𝑔 π‘₯ 𝑓𝑔 0 𝑓𝑔 π‘₯ =3 𝒙 πŸ‘ βˆ’1 𝑓𝑔 π‘₯ =π‘₯βˆ’1 𝑓𝑔 0 =0βˆ’1=βˆ’1

7 c) 𝑓𝑓 π‘₯ 𝑓𝑓 1 3 d) 𝑔𝑔 π‘₯ 𝑔𝑔 1 3 Find: 𝑓𝑓 π‘₯ =3(3π‘₯βˆ’1)βˆ’1 𝑓𝑓 π‘₯ =9π‘₯βˆ’4
WB3cd 𝒇 𝒙 =πŸ‘π’™βˆ’πŸ π’ˆ 𝒙 = 𝒙 πŸ‘ Find: c) 𝑓𝑓 π‘₯ 𝑓𝑓 1 3 𝑓𝑓 = βˆ’4=βˆ’1 𝑓𝑓 π‘₯ =3(3π‘₯βˆ’1)βˆ’1 𝑓𝑓 π‘₯ =9π‘₯βˆ’4 d) 𝑔𝑔 π‘₯ 𝑔𝑔 1 3 𝑔𝑔 π‘₯ = 𝒙/πŸ‘ πŸ‘ 𝑔𝑔 = 1/3 9 = 1 27 𝑔𝑔 π‘₯ = π‘₯ 9

8 a) 𝑔𝑓 π‘₯ 𝑔𝑓 1 2 b) 𝑓𝑔 π‘₯ 𝑓𝑔 βˆ’3 Find: 𝑔𝑓 π‘₯ = 𝟏 ( 𝒙 𝟐 +𝟏)+𝟏
WB4ab 𝒇 𝒙 = 𝒙 𝟐 +𝟏 π’ˆ 𝒙 = 𝟏 𝒙+𝟏 Find: a) 𝑔𝑓 π‘₯ 𝑔𝑓 1 2 𝑔𝑓 π‘₯ = 𝟏 ( 𝒙 𝟐 +𝟏)+𝟏 𝑔𝑓 = = 4 9 𝑔𝑓 π‘₯ = 1 π‘₯ 2 +2 b) 𝑓𝑔 π‘₯ 𝑓𝑔 βˆ’3 𝑓𝑔 π‘₯ = 𝟏 𝒙+𝟏 𝟐 +𝟏 𝑓𝑔 βˆ’3 = 𝟏 βˆ’πŸ‘+𝟏 𝟐 +𝟏= πŸ“ πŸ’ 𝑓𝑔 π‘₯ = 𝟏 𝒙+𝟏 𝟐 +𝟏

9 c) 𝑓 𝑔 βˆ’1 π‘₯ 𝑓 𝑔 βˆ’1 6 d) 𝑓 𝑓 βˆ’1 π‘₯ 𝑓 𝑓 βˆ’1 10 Find:
WB4cd 𝒇 𝒙 = 𝒙 𝟐 +𝟏 π’ˆ 𝒙 = 𝟏 𝒙+𝟏 Find: π’ˆ βˆ’πŸ 𝒙 = 𝟏 𝒙 βˆ’πŸ 𝒇 βˆ’πŸ 𝒙 = π’™βˆ’πŸ c) 𝑓 𝑔 βˆ’1 π‘₯ 𝑓 𝑔 βˆ’1 6 𝑓 𝑔 βˆ’1 π‘₯ = 𝟏 𝒙 βˆ’πŸ 𝟐 +𝟏 𝑔𝑓 6 = βˆ’ = 61 36 𝑓 𝑔 βˆ’1 π‘₯ = 1 π‘₯ 2 βˆ’ 2 π‘₯ +2 d) 𝑓 𝑓 βˆ’1 π‘₯ 𝑓 𝑓 βˆ’1 10 𝑓 𝑓 βˆ’1 π‘₯ = π’™βˆ’πŸ 𝟐 +𝟏 𝑓 𝑓 βˆ’ =10 𝑓 𝑓 βˆ’1 π‘₯ =𝒙 of course!

10 1 2π‘₯+1 π‘₯ 8βˆ’ 1 π‘₯ 1 8 βˆ’π‘₯ (8βˆ’π‘₯) 2 π’Œπ’ˆ 𝒙 𝒇𝒉 𝒙 π’Œπ’Œ 𝒙 2 π‘₯ 2 +1 4 π‘₯ 2 +4π‘₯+1
WB 𝒇 𝒙 = 𝒙 𝟐 π’ˆ 𝒙 =πŸπ’™+𝟏 𝒉 𝒙 =πŸ–βˆ’π’™ π’Œ 𝒙 = 𝟏 𝒙 Find the composite functions that correspond to: 1 2π‘₯+1 (8βˆ’π‘₯) 2 π‘₯ π’Œπ’ˆ 𝒙 𝒇𝒉 𝒙 π’Œπ’Œ 𝒙 8βˆ’ 1 π‘₯ 2 π‘₯ 2 +1 4 π‘₯ 2 +4π‘₯+1 π’‰π’Œ 𝒙 π’ˆπ’ˆ 𝒙 π’ˆπ’‡ 𝒙 1 8 βˆ’π‘₯ π‘₯ 4 7βˆ’ 2π‘₯ 2 𝒇𝒇 𝒙 π’Œπ’‰ 𝒙 π’‰π’ˆπ’‡ 𝒙

11 Challenge work in pairs
Choose four integers between 1 and 9 inclusive, called a, b, c, d Write the functions 𝑓 π‘₯ = 𝑒 π‘Žπ‘₯+𝑏 and 𝑔 π‘₯ = ln (𝑐π‘₯+𝑑) Find a) fg(x) b) the inverse … of your neighbours functions

12 Composite Domain and range

13 Sketch the graph of 𝑓𝑔 π‘₯ and state its domain and range
WB 𝒇 𝒙 = 𝒙 𝟐 π’ˆ 𝒙 =𝒙+πŸ‘ Sketch the graph of 𝑓𝑔 π‘₯ and state its domain and range π’‡π’ˆ 𝒙 = (𝒙+πŸ‘) 𝟐 Domain 𝒙 𝝐 𝑹 Range π’š>𝟎

14 Sketch the graph of 𝑔𝑓 π‘₯ and state its domain and range
WB 𝒇 𝒙 =π’™βˆ’πŸ π’ˆ 𝒙 = πŸ‘π’™ Sketch the graph of 𝑔𝑓 π‘₯ and state its domain and range π’ˆπ’‡ 𝒙 = πŸ‘(π’™βˆ’πŸ) π’ˆπ’‡ 𝒙 = πŸ‘π’™βˆ’πŸ” Domain 𝒙>𝟐 Range π’š>𝟎

15 𝑔𝑓 π‘₯ = 2𝑒 𝑓(π‘₯) 𝑔𝑓 π‘₯ = 2𝑒 ln 3π‘₯βˆ’2 𝑔𝑓 π‘₯ =2 3π‘₯βˆ’2 =6π‘₯ βˆ’4
WB The function f is defined by 𝑓:π‘₯β†’ ln 3π‘₯βˆ’2 , π‘₯βˆˆβ„›, π‘₯β‰₯ 2 3 Β The function g is defined by 𝑔:π‘₯β†’ 2𝑒 π‘₯ , π‘₯βˆˆβ„› a) Find 𝑔𝑓(π‘₯), giving your answer in its simplest form b) Find the range of 𝑔𝑓(π‘₯) 𝑔𝑓 π‘₯ = 2𝑒 𝑓(π‘₯) 𝑔𝑓 π‘₯ = 2𝑒 ln 3π‘₯βˆ’2 𝑔𝑓 π‘₯ =2 3π‘₯βˆ’2 =6π‘₯ βˆ’4 This is a linear graph Range 𝑓𝑔(π‘₯)βˆˆβ„›

16 𝑓𝑔 π‘₯ = 4𝑒 3 ln π‘₯ 𝑓𝑔 π‘₯ = 4𝑒 ln π‘₯ 3 𝑓𝑔 π‘₯ =4 π‘₯ 3 π‘₯ βˆˆπ‘…
WB The function f has domain [βˆ’βˆž, ∞] and is defined by 𝑓 π‘₯ =4 𝑒 π‘₯ The function g has domain [1, ∞] and is defined by 𝑔 π‘₯ =3 ln π‘₯ Explain why 𝑓𝑔 βˆ’3 does not exist Find in its simplest form an expression for 𝑓𝑔 π‘₯ stating its domain and range 𝑓𝑔 βˆ’3 =𝑓( 3 ln (βˆ’3) ) but ln (-3) is not possible 𝑓𝑔 π‘₯ = 4𝑒 3 ln π‘₯ Rules of logarithms 𝑓𝑔 π‘₯ = 4𝑒 ln π‘₯ 3 𝑓𝑔 π‘₯ =4 π‘₯ π‘₯ βˆˆπ‘… Range 𝑓𝑔(π‘₯)βˆˆβ„›

17 π’ˆ βˆ’πŸ 𝒙 = 𝒆 𝒙 βˆ’πŸ a) 𝑔𝑓 π‘₯ = 6 b) 𝑓 𝑔 βˆ’1 π‘₯ =2 Solve: 𝑔𝑓 π‘₯ =𝒍𝒏 𝒙 𝟐 βˆ’πŸ‘ +𝟏
WB10ab 𝒇 𝒙 = 𝒙 𝟐 βˆ’πŸ‘ π’ˆ 𝒙 =𝒍𝒏 (𝒙+𝟏) Solve: π’ˆ βˆ’πŸ 𝒙 = 𝒆 𝒙 βˆ’πŸ a) 𝑔𝑓 π‘₯ = 6 𝑔𝑓 π‘₯ =𝒍𝒏 𝒙 𝟐 βˆ’πŸ‘ +𝟏 So 𝑔𝑓 π‘₯ = ln π‘₯ 2 βˆ’4 =6 π‘₯ 2 βˆ’4 = 𝑒 6 π‘₯= 𝑒 6 +4 b) 𝑓 𝑔 βˆ’1 π‘₯ =2 𝑓 𝑔 βˆ’1 π‘₯ = 𝒆 𝒙 βˆ’πŸ 𝟐 βˆ’πŸ‘ So 𝑓 𝑔 βˆ’1 π‘₯ = 𝑒 π‘₯ βˆ’1 2 βˆ’3=2 𝑒 π‘₯ βˆ’1 2 =5 𝑒 π‘₯ =1+ 5 π‘₯= ln

18 𝒇 βˆ’πŸ 𝒙 = πŸ‘βˆ’π’™ a) 𝑓𝑔 π‘₯ =1 b) 𝑔𝑓 βˆ’1 π‘₯ =2 Solve: 𝑓𝑔 π‘₯ = πŸ‘βˆ’ πŸ‘ 𝒆 𝒙 𝟐
WB11ab 𝒇 𝒙 = πŸ‘βˆ’ 𝒙 𝟐 π’ˆ 𝒙 =πŸ‘ 𝒆 𝒙 Solve: 𝒇 βˆ’πŸ 𝒙 = πŸ‘βˆ’π’™ a) 𝑓𝑔 π‘₯ =1 𝑓𝑔 π‘₯ = πŸ‘βˆ’ πŸ‘ 𝒆 𝒙 𝟐 So 𝑔𝑓 π‘₯ =3βˆ’9 𝑒 2π‘₯ =1 𝑒 2π‘₯ = 2 9 π‘₯= ln 2 9 b) 𝑔𝑓 βˆ’1 π‘₯ =2 𝑔𝑓 βˆ’1 π‘₯ =πŸ‘ 𝒆 πŸ‘βˆ’π’™ So 𝑓 𝑔 βˆ’1 π‘₯ =πŸ‘ 𝒆 πŸ‘βˆ’π’™ =2 πŸ‘βˆ’π’™ = ln 2 3 π‘₯=3βˆ’ ln

19 𝑓 βˆ’1 π‘₯ = 4βˆ’π‘₯ , π‘₯<4 a) ff βˆ’6 =4βˆ’ 4βˆ’ βˆ’6 2 2 =4βˆ’ βˆ’32 2 =βˆ’1020
WB12 exam Q 𝑓 π‘₯ =4βˆ’ π‘₯ x≀0 Evaluate 𝑓𝑓(βˆ’6) F Find an expression for 𝑓 βˆ’1 π‘₯ Write the domain and range of 𝑓 βˆ’1 π‘₯ a) ff βˆ’6 =4βˆ’ 4βˆ’ βˆ’ =4βˆ’ βˆ’ =βˆ’1020 b) Let x=4βˆ’ 𝑦 2 β‡’ 𝑦 2 =4βˆ’π‘₯ β‡’ 𝑦= 4βˆ’π‘₯ 𝑓 βˆ’1 π‘₯ = 4βˆ’π‘₯ , π‘₯<4 c) Domain π‘₯<4 range π‘₯≀0

20 a) Range 𝑓 π‘₯ β‰₯0 b) 𝑓𝑔 π‘₯ =𝑓 1 π‘₯ = 1 π‘₯ βˆ’10 c) 1 π‘₯ βˆ’10 =3 β‡’ 1 π‘₯ βˆ’10=9
WB13 exam Q the functions f and g are defined by 𝑓 π‘₯ = π‘₯βˆ’ xβ‰₯ g π‘₯ = 1 π‘₯ xβˆˆπ‘…, π‘₯β‰ 0 a) State the range of f(x) b) Find 𝑓𝑔 π‘₯ c) Solve the equation 𝑓𝑔 π‘₯ = d) find the inverse function 𝑓 βˆ’1 π‘₯ a) Range 𝑓 π‘₯ β‰₯0 b) 𝑓𝑔 π‘₯ =𝑓 1 π‘₯ = 1 π‘₯ βˆ’10 c) π‘₯ βˆ’10 =3 β‡’ π‘₯ βˆ’10=9 β‡’ π‘₯= 1 19 𝑑) Let π‘₯= π‘¦βˆ’10 β‡’ 𝑓 βˆ’1 π‘₯ = π‘₯ 2 +10

21 One thing to improve is –
KUS objectives BAT Find composite functions BAT Find the domain and range of composite functions self-assess One thing learned is – One thing to improve is –

22 END


Download ppt "Functions composite."

Similar presentations


Ads by Google